Tutl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Hierarchical Skill Discovery via Reinforcement
Learning

Max Fest

0

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Hierarchical Skill Discovery via Reinforcement
Learning

Hierarchische Entdeckung von Fahigkeiten via
Reinforcement Learning

Author: Max Fest
Supervisor: Prof. Dr.-Ing. habil. Alois Knoll
Advisor: Dr. rer. nat. Zhenshan Bing

Submission Date: 15.11.2021

0

I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.11.2021 Max Fest

Abstract

Reinforcement learning (RL) has traditionally focussed on agents that achieve mastery in
some narrow task, generalising poorly even against minor variations. Countering this, recent
skill discovery methods have sought to learn behaviours in a completely task-agnostic manner,
exploring what is possible in an environment and how to achieve it. We want to take
advantage of the strong parallel between skills and options in HRL, and provide a framework
for learning a hierarchy of skills in an unsupervised, bottom-up manner. We adjust a prior
work and propose cDIAYN, a skill discovery method that learns skills suitable for hierarchical
composition using a continuous skill space. We show that we can recursively apply cDIAYN
to the same reward-free environment to learn a multi-layer skill hierarchy.

1ii

Contents

Abstract

1.

2.

Introduction

Preliminaries

2.1. Reinforcement Learning
2.1.1. Deep Reinforcement Learning
2.1.2. Multi-task and Goal-conditioned RL
2.1.3. Intrinsic Motivation e
2.14. Model-based RL)
2.1.5. Hierarchical Reinforcement Learning

22, Information Theory

2.3. Variational Autoencoder e

24. Skill Discovery

2.4.1. Variational Option Discovery

2.4.2. Diversity is all youneed (DIAYN)
243. Ananalogywith VAE
244. Applications

Related Works

3.1. Variational Option Discovery Algorithms
3.1.1. Explore, Discover, Learn
3.2. HRL withlearned options
3.2.1. Latent space policies for hRL (SAC-LSP)
3.2.2. HRL by discovering Intrinsic Options (HIDIO)
3.2.3. Option Hierarchies

Problem Statement

4.1. Motivation e e
4.2, Success Indicators e
4.3. Environments e e e e

Hierarchical Skill Discovery

51. Deep Skill Hierarchy

iii

(o NI e N)|

e

10
12
14
14
16

iv

Contents

5.2. cDIAYN . . . e e
521. Objective L e
5.2.2. Continuous Skill Prior
52.3. Optimising the Objective
5.2.4. State Normalisation
525. Temperature annealing

6. Experiments

6.1. Simple navigation environments L.
6.1.1. Smoothness
6.1.2. Skill Dimensionality
6.1.3. Escaping Randomness
6.1.4. Goal-attaining Behaviours
6.15. w-annealing L
6.1.6. Hierarchy

6.2. Robotics Environments o L oL
6.21. Fetch
622, Hand e

7. Discussion
71. Applicability
72. Advantages e
73. Weaknesses

8. Conclusion

8.1. Future Work e
8.1.1. Skill Discovery
81.2. Hierarchy
8.1.3. Algorithm Evaluation

A. General Addenda
A.l. Implementation L
A2, Hyperparameters

List of Figures
List of Tables

Bibliography

50
50
50
51

53
53
53
56
56

58
58
58

60

62

63

1. Introduction

Since its foundation, the goal of artificial intelligence (AI) has been to allow computers to
perform more complex tasks with less human supervision. We want to develop problem-
solvers that are immediately applicable to broad classes of problems, perhaps the broadest of
which is studied in Reinforcement Learning (RL). RL concerns itself with problems that can
be modelled as an agent making decisions in an environment over time (figure 1.1).

PN

Environment

\ state, /

reward

Figure 1.1.: The RL loop.

At every time-step, the agent selects an action which modifies the environment state and
emits a corresponding reward signal. The basic idea here is rooted in behaviourism: the
agent should learn to seek out rewarding states and to avoid states that are unrewarding
or punishing [1]. The agent starts out as a blank slate, and must learn by trial-and-error
interaction with the environment how to behave in order to maximise total reward. This
formulation implies a few fundamental challenges:

1. The curse of dimensionality: For higher-dimensional input spaces, we need exponen-
tially more points to cover it. For example, if we are asked to choose an action M times,
with N possible actions, we are searching a space of NM possible action-sequences. If we
wanted to find the best one by brute-force and without making any further assumptions,
this is how many we would have to evaluate.

2. The exploration-exploitation dilemma: Assuming that we can’t cover the space of
possible behaviours exhaustively, there is a fundamental tradeoff between exploitation
and exploration, i.e. between choosing the best action according to our current state of

1. Introduction

knowledge, and exploring other actions that could be better.

3. The credit assignment problem: When we reach a rewarding state, this was likely
preceded by many actions. Which of these were most important in reaching this final
state? At which could we have acted better?

4. The reward bottleneck: In the basic RL formulation, the reward function is the only
channel through which we can communicate to the agent which behaviours we want it
to learn. Engineering these to elicit complex behaviours very quickly becomes difficult,
but less informative reward functions make the problem more difficult to solve for the
agent.

Temporal abstraction has long been hypothesised to be a key ingredient for better man-
aging all of the above [2]. This can be intuited from a simple cooking analogy: a recipe
generally doesn’t describe the individual joint movements required to correctly manipulate
the ingredients, but provides a short list of sub-goals that the cook should know how to
accomplish, like dice the onions or cook the noodles. Each of these sub-goals can be decomposed
into further sub-goals, and so on until sub-goals really do reflect joint movements. In this
way, we can decompose a single RL problem into many smaller problems, each of which can
ideally be evaluated in isolation of the others.

However, these approaches generally still rely on an external reward signal, limiting their
potential to learning the behaviours we can effectively encode. These are usually also task-
specific, making them difficult to generalise, and meaning that an RL agent starts from a
blank slate (i.e. from individual joint movements) when faced with a new task (or recipe).

Of course, there should be much to gain from interaction with the environment even in
the absence of such a reward signal. Like a baby builds a model of the world, we would like
agents to be capable of exploring the realm of possibilities and then using this experience to
inform future actions (for example when maximise an external reward). In other words, we
want to design reward functions that are task agnostic, usually termed intrinsic rewards in RL.
Where external rewards characterise a top-down approach to learning, intrinsic rewards may
be viewed as their bottom-up counterpart, in that we are attempting to model the inductive
biases that enable learning in a more general sense.

One way to benefit from unsupervised interaction with the environment, is to discover
skills. A skill can be thought of as the solution to a task, but in skill discovery the agent learns
to propose tasks to itself. If a human were put on a patch of grass with a ball, they would
eventually discover that they can kick it, or pick it up and bounce it. Given enough time
and nothing else to do, they can find out what else is possible with a ball, and how to do it
efficiently and consistently.

Many of the goals we set an agent presuppose certain instrumental knowledge. For

1. Introduction

example, if we want a simulated humanoid agent to move to some goal-location, it must first
learn to move at all. The larger the dimension of state- and action-spaces, the more ill-defined
the initial navigation goal therefore is. We would like to learn different gaits and movement
patterns prior to optimising goals that build on these skills.

Such unsupervised skill discovery has been explored in a number of prior works [3, 4, 5],
described in this thesis as Variational Option Discovery (VOD) [6] algorithms. These are
built around the diversity assumption, by which we can learn many skills simply by declaring
that they be different. VOD has also formed the basis for hierarchical approaches [7, 8],
however skill discovery is generally only performed in a single layer. In this thesis, we aim to
fuse VOD and HRL, proposing a mechanism for learning hierarchies of skills in a completely
unsupervised manner. In this, we adopt a more flexible definition of skills in which they are
composed of other skills, such that the diversity assumption is fulfilled at different scales of
temporal abstraction.

2. Preliminaries

2.1. Reinforcement Learning

Reinforcement Learning aims to solve complex sequential decision-making problems, wherein
an agent interacts with an environment to optimise some kind of reward. This problem class
is usually modelled as a Markov Decision Process (MDP), characterised in its simplest form by
the tuple (S, A, P, r), where:

¢ S is the set of states. A state includes any information about the environment and the
agents place in the environment that the agent has access to.

e A is the set of actions the agent can take. It defines the parts of the MDP that the agent
has direct control over.

e P:SxAxS — [0,1] is the environment transition function, i.e. if action a € A is
taken in state s € S, you end up in state s’ € S with probability P(s|s,a). In contrast
with dynamic programming, we do not assume knowledge of transition dynamics prior
to learning, only that we can sample from them via environment interaction.

e r: S x A — Ris the reward function. It encapsulates how ‘good” an action that you
take from a specific state is. We abbreviate the reward achieved on timestep t with r;.

The behaviour of the agent is summarised by its policy 7t : S — A, the function that defines
what action the agent takes in each possible state. From this we derive the RL problem: how
do we learn an optimal policy 77*? More broadly (since optimality is defined in terms of
reward), how do we map an arbitrary reward function r to a policy 77*?

Typically we aim to maximise the expected cumulative reward, i.e. we solve:

T

T = arg max Err(so) Z T (2.1)
t=0

In this, T = (so, 40,51, a1, -..,aT—1,5T) 1S a trajectory produced by rolling out the policy in the
environment for T time-steps.

2. Preliminaries

However, this is just the most concise formulation. For example, this problem is usually
extended into the infinite horizon setting (T = o0), in which case (2.1) is made solvable by
multiplying r; with a discount factor 7!, v € [0,1). Tt also encodes the notion that we care
more about immediate than distant rewards. In practice, both the optimisation problem itself
and how we solve it are adjusted to better fit different learning mechanisms we expect the
agent to display.

To optimise (2.1), RL algorithms estimate the expected reward achievable from a state under
the current policy, as given by the value function V'

V7(s) :]En{ ’Yk7t+k‘5t = 5}
k=1

ZIEn{VtH + YV (st11) st = S} (2.2)
From this, we can define the action-value function Q™:

Q" (s,a) = Ex{ris1 + YV (st41)|st = s,ar = a} (2.3)

Intuitively, if Q" (s,a) > V" (s), then we could increase the expected reward of our policy by
encouraging it to take the action a in state s. This idea is the basis of Actor-Critic methods [9].
We can see that the problem of finding an optimal policy is closely linked to that of finding an
optimal value function, though the latter problem is slightly broader. In policy iteration, we use
(2.2) to evaluate the current policy, and directly change the policy based on this evaluation,
whereas in value iteration approaches we aim to find the optimal value function, from which
we subsequently derive the optimal policy (at each state we take the action that maximises
action-value).

2.1.1. Deep Reinforcement Learning

One important adjustment was in the use of neural networks to approximate the policy
and/or value functions, giving birth to the field of deep reinforcement learning. The first
deep RL (DRL) algorithm to show significant promise: ‘Deep Q-Networks (DQN)’ [10] learned
to play Atari games from raw, unstructured pixel data to learn a parameterised approximation
of equation 2.3 via stochastic gradient descent with the loss:

2
Li(ei) -]E(s,u,r,s’,a’)NU(D){ <1’ + ')’rr}f}x Qe; (S// a/) - Q(?i(S/ a)) } (2-4)

Not only did DQN play Atari games at a level comparable to that of humans, but it did so
without the need for handcrafted state representations, and was thus immediately applicable
to a wide range of problems. The primary contribution was in the formulation of a few
techniques that allow for more stable training of deep function approximators in the RL

2. Preliminaries

setting. Most importantly, they used Experience Replay, which refers to the use of a replay
buffer D to store experience (s,a,r,s’) collected from the environment, from which we can
then sample (to decorrelate training data) to train the neural network, as well as an outdated
target q-function parameterised by ;" (updated to equal 6; every few iterations).

2.1.2. Multi-task and Goal-conditioned RL

In the standard MDP, we assume a single reward function r, corresponding to the optimisation
of a single target. Multi-task RL generalises this by introducing the notion of tasks 7; =
(Si, Ai, pi(s0), pi(s'|s,a),ri(s,a)) € T. The goal is then to learn a policy that generalises well
over all these tasks, finding and exploiting the commonality between them, and more quickly
adapting to previously unseen tasks. This is a deliberately broad definition, but we may
choose any subset of the above to vary between tasks. An overview of this variability is given
in [11].

In Multi-task RL, each task defines its own MDP. Goal-conditioned RL can be seen as a
special case of this, in that a family of reward functions r, : S x A — R is induced by a set
of goals ¢ € G over a single MDP, i.e. S, A, p(s'|s,a), and p(sg) generally remain constant
between goals.

The goal-conditioned RL (GCRL) framework was introduced as Universal Value Function
Approximation [12]. Intuitively, we determine the value Vi (s) of a state s € S within the
context of a goal g € G we are currently trying to reach, and thus derive a goal-conditioned
policy 7t(als, g). In many prior works, the goal space is simply a subset of the state space
G C S, but others introduce representation learning to learn a more meaningful goal space
[13, 14].

2.1.3. Intrinsic Motivation

Traditionally, an MDP supplies a reward function which the agent aims to optimise. However,
designing such a reward function comes with many challenges. If the reward is sparse (i.e.
most transitions (s, a,r,s’) have r = 0), then these transitions offer the agent no guidance on
how to adjust its behaviour. On the other hand, crafting a task-specific dense reward (reward
shaping) usually requires a domain expert and is notoriously difficult to get perfectly right,
potentially introducing unintended optima.

Work in Intrinsic Motivation (IM) seeks to develop task-agnostic reward functions, based
on general principles like information gain [15], empowerment [16], or surprisal [17]. It is
based on the idea that agents can learn from environment interaction even in the absence of

2. Preliminaries

an external reward signal, for example to explore the environment more effectively. The agent
can autonomously gather knowledge that later facilitates quicker adaptation to new tasks.
In general, intrinsic motivation is integrated into the RL framework simply by replacing the
usual reward function 7., with a weighted sum of internal and external rewards [18]:

r(s,a) = rim(s,a) + Prext(s,a)

IM can therefore be used to turn a sparse external reward signal into a dense one, providing
a mechanism for evaluating environment interaction that would otherwise have offered no
information for the RL agent.

2.1.4. Model-based RL)

In Model-based RL (MBRL) we attempt to learn the environment transition dynamics p(s’|s, a)
in order to simulate environment interaction without actually having to perform it. The agent
is imbued with a model of the world, which it may use to ask itself "what if?", to reason
about trajectories it never actually experienced. It may choose actions not only according to
its value estimate of the current state, but also of the possible future states, thus introducing a
mechanism for planning into the future.

Model-based RL promises to improve sample efficiency by weakening the dependence on
real environment interaction. With a perfect model p(s’|s, a), we do not require environment
interaction at all, although we still encounter a tradeoff between acting and planning. Knowing
the dynamics does not imply value-function or policy given some reward function, but it
gives us more flexibility in deciding how we want to traverse the state-space in order to
maximise rewards.

As we might expect, acting on a flawed model of the world can cause an agent to learn
a suboptimal policy, and model-based RL agents may attain lower asymptotic performance
than their model-free counterparts [19]. One key problem in model-based RL (similar to that
of off-policy RL) is allowing the agent to learn from experience generated from a flawed or
outdated model.

2.1.5. Hierarchical Reinforcement Learning

At every time-step, an RL agent chooses an action to execute. The longer an agent interacts
with the environment, the larger the space of actions the agent could have taken instead.
In the absence of an effective exploration mechanism, flat RL algorithms generally have
trouble with such long-horizon environments. Hierarchical RL (HRL) aims to decompose a
long-horizon task into a hierarchy of subproblems, each of which is simpler to solve than the

2. Preliminaries

full problem. More concretely, the action space of the agent is augmented or replaced with
behaviours that are executed for more than one time-step.

This idea was pioneered in the Options framework [20]: an option w is defined as a tuple
(1w, 7w, Bw), where I, is the initiation set of the option, 77, is the policy taken by the agent
acting under w, and B, : S — [0,1] is the termination probability. In training the option
policy 7., we typically encounter an option-specific reward r,,, different from the main reward,
providing a link to multi-task RL.

In general, hRL approaches learn a high-level controller, which chooses options to optimise
the main reward, where each option is learned and executed by a worker, thus effectively
forming a two-level hierarchy [21, 22, 23]. Alternatively, we can build an Option hierarchy [24,
25]: a sequence of sets of options (1,)y, ..., (),), where the action space for options w €);
is ();_1, and the action space for (}; is A. In the following, we use the terms option and skill
interchangeably.

2.2. Information Theory

Information theory provides a framework for the mathematical analysis of the coding of
information, for storage, quantification or communication. In the paper that created the field
[26], Claude Shannon demonstrated the unity of information media.

In RL, information-theoretic measures allow us to formalise very high-level ideas about
how we want the agent to behave. Two such measures which are particularly relevant, are
entropy H(-) and Mutual Information (MI) Z(-;-).

The entropy of a random variable (such as of the policy 77(-|s;)) quantifies the uncertainty
contained in it. A policy with maximal entropy follows a uniform distribution over the
action-space A for a given s;, whereas a policy with minimal entropy is deterministic, i.e.
nt(als;) = 1 for some a € A and 7t(a'|s;) = 0 for a’ # a. Maximum-entropy RL aims to
find a balance between maximising rewards and using various actions to achieve this, by
augmenting the standard RL reward with an entropy term:

T
mt=arg max Er (s Z[rt +aH(t(-]st))]
t=0
The temperature parameter a controls the stochasticity of the policy, with higher « more
strongly encouraging exploration. Prior works have found Maximum-entropy RL not only
enhances exploration, but leads to more robust policies and improved learning speed [27].

We note that although the definition of discrete entropy is drawn from the axioms of
information theory, this is not true for continuous (or differential) entropy, and it loses some

2. Preliminaries

of the appealing properties of the discrete form (e.g. non-negativity) [28]. However, the
relative entropy between two continuous random variables and their mutual information
retain their validity.

The MI between two variables refers to the amount of information we can gain (or the
reduction in uncertainty) about one variable by measuring the other. It is thus also referred
to as Information gain. MI can be expressed in terms of entropy:

T(X;Y) = H(X) — H(X|Y) = H(Y) — H(Y|X) (2.5)

forward MI reverse MI

Because MI measures the mutual dependence between two variables, it is symmetric (Z(X;Y) =
Z(Y; X)). One useful way of characterising M], is as the difference between the probability
distributions induced (here) by the random variables X and Y. This can be computed in
terms of the Kullback-Leibler Divergence:

Z(X;Y) = Dx(p(X, V) |[p(X)p(Y)) (2.6)

This measures how similar the joint distribution is to the product of the marginal distributions,
and thus ’how independent” X and Y are.

2.3. Variational Autoencoder

Variational Autoencoders (VAE) [29] are a type of deep generative model. Autoencoders are
used to learn a lower-dimensional representation of the input data. For example, if we are
trying to label images of handwritten digits, a strong candidate for such a lower-dimensional
representation would be the digit itself. This can be achieved by creating a neural network
which attempts to reconstruct the input as accurately as possible after passing through a
bottleneck layer (figure 2.1).

Compressed latent .
Inputs ———» P —— > Reconstruction

Encoder representation Decoder

Figure 2.1.: A simple autoencoder

2. Preliminaries

For reconstruction to work, we assume that the network must learn statistical regularities
in the input data, allowing it to form a compressed representation at the bottleneck layer.

In this, we assume that the training data (x;);—o_, is sampled from some underlying
generative process p(x|z). If the input data were handwritten digits, we might expect p(z) to
model the digit itself, as well as other properties like the slant or size. We would like to use
our training data to infer the characteristics of p(z), i.e. we want to compute p(z|x). Bayes
formula gives:
p(x|z)p(2) 2.7)

p(x)
Unfortunately, this requires the computation of p(x), which is generally intractable. The VAE
framework circumvents this by approximating p(z|x) (encoder) and p(x|z) (decoder) with
parameterised functions, and deriving the following optimisation problem via variational
inference:

p(zlx) =

0'," = argmax { By [logpo(+12)] ~pDw @lz0) 11 p2) | 29)

reconstruction loss regulariser

Therefore, we want to maximise the probability of reconstructing the input data x (re-
construction loss), and make the latent distribution g4(z|x) as similar to our prior latent
distribution p(z) as possible. A common choice for p(z) is the standard multivariate normal
distribution N (0, 1), because this allows for the analytic computation of the regularisation
term. In equation 2.8 we adopt the more general -VAE [30] framework, which adds a weight
to the regulariser.

The regularisation of the latent space allows us to generate samples from p(x|z) simply by
sampling from our latent prior p(z). This is not possible with a regular autoencoder, because
the latent space it produces is highly irregular, thus sampling from it is unlikely to yield
useful reconstructions.

2.4. Skill Discovery

Skill discovery algorithms lie at the intersection of the ideas discussed in the previous section.
Skill discovery methods aim to learn skills in a task-agnostic manner, and assume that these
can be useful for later tasks (given by an external reward). Thus, they provide a framework
for learning from completely unsupervised interaction with the environment. This inverts the
usual process of skill formation, which relies on an external reward signal to determine which
temporally extended behaviours are useful, preventing the agent from learning behaviours
that aren’t immediately useful for the given task. A recent literature review terms such

10

2. Preliminaries

methods Intrinsically Motivated Goal Exploration Processes (RL-IMGEP) [31], and we follow
their definitions closely to place skill discovery within the broader context of RL research.

First, we define skills as represented by a skill embedding z and skill-conditioned reward
function r, which measures the agents progress towards successfully performing z. Each
skill embedding z implies a skill policy 7t(+|,z), which we refer to simply as a skill when
executed for a certain number of time-steps T > 1. As in the classical Options framework,
skills then correspond simply to temporally extended behaviours. From this, we may define
the skill-MDP: (S, Z, A,rz, T, p(so)), imposing the skill structure on the reward-free MDP
(S, A, T,p(so)). In this, we have used the word skill abstractly to refer to any behaviour
the agent might wish to engage in. Goal-reaching in the sense of attaining some final state
is therefore only a subset of the broader set of possible skills, encodable in some reward
function 7.

We can now describe some different branches of RL-research introduced in section 2.1 as
special cases of this skill-MDP. We may view classical RL as a skill-MDP with |Z| =1 and a
single reward-function the agent aims to optimise, both of which are given (not learned). In
intrinsic motivation, neither goal nor reward are given, and rather defined by the researcher
to reflect a property of agent behaviour which may be useful across different MDP’s (like
exploring the environment). Skill discovery emerged naturally from intrinsic motivation by
extending it to learning a similar objective across multiple skills/tasks, where each skill is
learned to be different from others.

This is easily extended into goal-conditioned RL, where |Z| > 1. Here, Z is usually a
subset of S (learned or given), and 7z is some distance metric relating the current state of the
agent with the goal state. Thus, skills are simply goal-reaching behaviours.

Multi-task RL doesn’t cleanly fit the skill-MDP, because it may introduce variability in the
state- and action- spaces, and the transition dynamics between tasks. The focus of multi-task
and meta-learners is on formulating an algorithm that can exploit the common structure of
the given tasks to learn more quickly on unseen tasks. Although skill discovery approaches
learn to propose their own tasks (in a more limited sense, in that only the reward function
may vary), they must also learn to generalise well over these skills. Therefore advancements
in multi-task and meta-RL may be seen as complementary.

Skill discovery further reduces the amount of human engineering required in the design of
the agent. As an input, skill discovery methods expect the reward-free MDP (S, A, T, p(so))-
Unlike GCRL, the skill space Z is independent of the state space, taking on the more abstract
role of skill embeddings. A skill discovery method maps Z to some skill-conditioned reward
function rz, and this mapping defines what constitutes a skill. By sampling diverse z € Z
and learning corresponding skills, the agent learns to propose and solve its own tasks.

11

2. Preliminaries

2.4.1. Variational Option Discovery

We concentrate on a number of recent approaches motivated by information-theoretic objec-
tives that define what may constitute a skill, and term these Variational Option Discovery
(VOD) algorithms following [6]. The objective defines a mapping between the skill embedding
z and some property of a trajectory T, like starting and final states sy and st ([3]), transitions
(s,s") within T ([5]), or even just states s ([4]). Broadly, the objective should specify what
information flows into the this skill mapping, and what information should be ignored.
Implicit in the examples given above is that we ignore the actions taken by the agent, when
mapping skill embeddings to trajectories (for example because we don’t want to distinguish
trajectories in which actions don’t have any effect on the state). If we choose to distinguish
trajectories only by so and st, we ignore all states sy, ..., s7_1 inbetween.

We may define a corresponding function f(7), which we term the trajectory preprocessing
function. We visualise f for the objectives given above in figure 2.2, and provide an overview
in table 3.1.

f@ =1 = {(50,51,52,53)} {S0,51,52,83, } {(50,51), (51,52), (52,53)} {(s0,53)}
[
[]
[J
o [

Figure 2.2.: Visualising different f(7) for a short trajectory in 2-d.

With f(7) we can formulate the general objective:

F(0) =1(z f(1)) = H(z) - H(z|f(7) (29)
reverse MI
=H(f(1) -~ H(f(D)]2) (2.10)
forward MI

Most approaches choose the reverse form of the MI, because the distribution p(f(7)) is
generally intractable, whereas p(z) can be chosen and fixed, and its entropy therefore
easily computed. This choice also determines whether our skill model is discriminative
(mapping trajectory information to skill embeddings) or generative (allowing us to use the
skill embedding to predict trajectory information): in simpler terms, whether z is an input or
the output of the skill mapping.

12

2. Preliminaries

The approaches are united by a diversity assumption [32]:

Diversity assumption: Each skill should produce repeatable/predictable trajectories in the
environment, and should be different from other skills.

This can be inferred easily from equation 2.9: while we maximise #(z) (meaning we
want the overall distribution over skill variables to be as uniform as possible), we minimise
H(z|f (7)), implying that the mapping from trajectory 7 to skill embedding z should be as
close to deterministic as possible.

In the reverse form of the MI (discussed in the following, but the forward case is analogous),
we train a probabilistic discriminator model g4 (z|f (7)) to map trajectories 7 to skills z. In prac-
tice, this is done with a Multi-layer-perceptron (MLP) or a Recurrent Neural Network (RNN).
We then use this model to compute intrinsic rewards r,(f (7)) with which we train the skill-
conditioned policy. A common choice for the skill-rewards is then 7, (f(7)) = —logq,(z|f(T)).
Thus, the policy is rewarded for producing rollouts which reflect the skill mapping learned
by the discriminator. This process is repeated until the discriminator and policy converge,
and is summarised in algorithm 1.

Algorithm 1: Variational Option Discovery

Result: Policy 7ty(als, z)
Given: skill prior p(z);
Initialize policy 7g(als, z), discriminator g4(z|f(7T));
while not converged do
and then rolling out a trajectory 7 in the énvironment, T~ 1y(+|, 2);
update discriminator via supervised learning to maximise E[log g4 (z|f(7))] using
D;
compute intrinsic reward r,(f(7)) using g4 and relabel trajectories in D;
| update 7y using any RL algorithm;

In practice, many algorithms compute skills on a per time-step basis, rather than on
complete trajectories, meaning that f(7) decomposes T into its constituent time steps. This
arguably trades off conceptual validity for algorithmic simplicity. Intuitively, we can also
more quickly collect individual (time-step, skill)-pairs than (trajectory, skill)-pairs, so our
models receive more training data.

13

2. Preliminaries

2.4.2. Diversity is all you need (DIAYN)

DIAYN is one instance of this skill discovery approach. We briefly describe it here to offer
a concrete example of ISD, and because this thesis builds on it. DIAYN distinguishes itself
from other comparable approaches mainly by the minimality of its objective, built around the
assumption that skills need only visit diverse states.

DIAYN maximises the mutual information between skills and states Z(s; z), such that skills
dictate the states the agent visits. p(z) is fixed to a uniform categorical distribution, thus
Z is discrete and p(z) is the maximum entropy distribution over Z. By mapping states
to skills and introducing the inductive bias that each state should map to only one skill
(in so far that this is possible), we are effectively creating a | Z|-partition of the state space.
Furthermore, DIAYN uses Soft Actor-Critic, an entropy-regularised RL algorithm to learn the
skill-conditioned policy 7ty (als,z). This encourages nearby states to be grouped under the
same skill, and skills to move away from each other to more easily discriminable states.

The full objective is therefore F(0) = Z(S; Z) + aH(A|S, Z), where a determines the
intensity of entropy-regularisation and is a tuneable parameter.

The authors use a learned discriminator g4(z|s) to approximate the unknown distribution
p(z|s), and use this discriminator to variationally lower bound the objective as follows:

F(0) =H(A|S,Z) —H(Z|S)+H(2)
:’H(A|S, Z) + IEZNP(Z),SNTL’(Z) [10g p(Z|S)] -]EZNP(Z) [log p(Z)]
ZH(A"S/Z) +]Ez~p(z),s~7r(2) [log qlP(Z‘S) - log p(Z)] = g(f), ¢)

Building on this, DIAYN roughly follows algorithm 1, although it performs model updates
after every environment step, rather than after collecting a batch of trajectories. The authors
show multiple ways to use their method which extend more broadly to skill discovery,
therefore we describe them in section 2.4.4.

2.4.3. An analogy with VAE

Achiam et. al [6] draw an analogy between Information-theoretic Skill Discovery (VOD) and
Variational Autoencoders, by giving a direct mapping between the B-VAE objective and the
objective optimised by ISD. They term these approaches (described here as VOD) Variational
Option Discovery Algorithms. Here, we use c to refer to the latent skill (context) variable to
clarify differences with the VAE objective.

14

2. Preliminaries

T, qy = argmax{ E [E [log gy (c|T)] +BH(rm|c)] } (2.11)
Thap \ e~p(e) Tom(c]0) N——— N——
reconstruction loss regulariser

There is a direct correspondence between the input data x and the context variables c,
reflecting their role as ‘ground truth’” in reconstruction training. Counterintuitively, this
means that the trajectory T maps to the VAE latent variable z. Regularisation is performed
by the entropy term 7 (7t|c), which encourages the policy to explore within each context. In
practice, the VOD objectives require variational inference to be made tractable, resulting in
these similarities.

This provides a useful framework for thinking about VOD. In this mapping, the discrimina-
tor g, is the decoder, or generative network, whereas the policy acts as the encoder, encoding
latent variables into trajectories. Again, intuitively we would expect this to be the other way
around, to align more closely with the information bottleneck principle the VAE is based
on, since the skill embedding z represents a compressed form of the skill. However, this is a
purely semantic difference, as illustrated in figure 2.3.

Epoch 1 Epoch 2

z me(als,z) T qg(zlT) Z me(als,z) T quzln) eee

Figure 2.3.: The skill variable z is an information bottleneck in VOD.

The important difference is that we are performing reconstruction on the latent skill
variables, whereas we are regularising the trajectories collected in the environment. This
is because in skill discovery we assume knowledge of the generative latent factor (the skill
embedding), whereas in the VAE framework we aim to discover it.

The B-coefficient in the VAE framework corresponds to the a-coefficient weighting the
entropy-regularisation term. This provides another useful intuition. Like 8, « determines the
level of disentanglement between skills [30], and thus increasing a should lead to smoother
latent space. If a skill behaves more randomly, a wider range of trajectories is grouped under
this same skill, and there is likely a large amount of overlap between skills ‘close” to one
another. If we set the entropy to 0 (or make it negative for continuous Z), it would not be
difficult for the policy to learn trajectories for each skill that are completely disentangled,
i.e. that have no overlap. However, this would also limit the meaningfulness of the learned

15

2. Preliminaries

skills, as closeness in the latent space might not correspond with any notion of closeness in
the trajectory space. This is problematic, since skills necessarily derive their meaning within
the context of other skills. For example, DIAYN with one skill can never escape random
behaviour.

This analogy gives us another way of thinking about skill discovery and justifies trying to
leverage advances made in the training of VAEs for VOD.

2.4.4. Applications

There are a number of other ways to leverage the skill-conditioned policy 7y(als,z) and
discriminator g¢(z|7) learned during skill discovery [4].

1. Options in HRL: We may elevate the agents action space by replacing (or augmenting)
it with learned skills, hopefully simplifying later tasks.

2. Finetuning: We can initialise an agent policy with the weights 6 of the skill-conditioned
policy, similar to the use of pre-trained models in computer vision. Although this is a
conceptually weaker idea because it throws away the structure of the learned policy, it
may improve sample efficiency.

3. Adding supervision: Skill discovery also provides a straightforward avenue for intro-

ducing human supervision into the learning process. For example, we might learn
skills g : f(S) — Z from some function f of the observations. In the locomotion case, f
could map the current state to the agents center of mass, and therefore learn skills that
effectively manipulate the agents center of mass. Alternatively, f could simply constrain
the state to the (x, y) coordinates of the agent on the environments “ground’, to learn
skills that move in different directions.
Perhaps more importantly, it can make agent behaviours more intelligible (and therefore
easier to debug) to humans. An agents solution to a given task would decompose to
a shorter sequence of temporally extended behaviours, rather than a large number of
actions that are difficult to assess individually.

4. Imitation Learning: We may want to allow our agent to learn from experience collected
by another (usually more expert) agent. In imitation learning, the agent is provided with
trajectories 7, produced by such an agent, either consisting of state-action sequences
T. = {(st,a;)}, or in the broader case observations 7, = {(0;)}. Instead of trying to
learn a policy that reflects the expert knowledge encoded in the trajectory, we can use
the discriminator to infer the learned skill that most closely matches the trajectory by
computing z, = max.cz[q4(z|T)].

16

2. Preliminaries

5. Model-based control: If instead of a discriminator, we learn a dynamics model using
the forward MI, we may use this model for planning in the latent space. DADS [5]
learns g4 (s'|s, z), allowing us to predict the next state s’ given s and z.

17

3. Related Works

As described in section 2.4, skill discovery methods fall within a very broad context of RL
techniques. Here, we will limit ourselves to a discussion of skill discovery methods based on
maximising mutual information, as well as hierarchical reinforcement learning methods that
use learned options and/or a multi-layer hierarchy. However, because of the broadness of
the proposed method, there is overlap with many other research areas, not mentioned here.
Intrinsic motivation is particularly relevant, as it may be viewed as the single-skill predecessor
to skill discovery. [18] reviews works in intrinsic motivation, and [31] concentrates on a
subclass of approaches at the intersection of intrinsic motivation and goal-conditioned RL.

3.1. Variational Option Discovery Algorithms

We describe the key design decisions in VOD methods, and give an overview of their
variability. Most methods adopt the same iterative approach described in section 2.4, but
another recent work Explore, Discover, Learn [33] calls this into question, and proposes an
alternative structure.

1. Objective
VOD methods employ a variety of objectives, and implement these by mapping skills to
different elements of trajectories. We summarise some of these in table ??.
Because the authors of the different methods generally don’t fix the other aspects of the

Algorithm ‘ Objective ‘ f(t) ‘
DIAYN [4] Z(s;z) (s0),(51), s (5T)
VIC [3] Z(sT;z|s0) (so,sT)
VALOR [6] I(t;z) | (0,511 — S0,822 — S11,5T — ST-11)
DADS [5] Z(s';z|s) (so,81), (51,82),.-(ST-1,5T)
DISCERN [34] | Z(g;sT) (sT)
Skew-Fit [35] Z(s;g) (s0),(51), -, (5T)

Table 3.1.: VOD algorithms and their objectives

algorithms, it is difficult to assess what difference the chosen objective makes. However,

18

3. Related Works

it implies the trajectory decomposition f(7), and thus what training data the skill model
receives during supervised learning, both in terms of the dimensionality of inputs and
outputs and the amount of training data.

Subsequent to choosing an objective, we must still choose the forward or reverse MI
to optimise it. Prior works have generally chosen the reverse MI because it does not
involve the intractable p(f(7)), with DADS and EDL being examples of exceptions.

. Reward function mapping (Skill Model)

We then perform supervised learning with the skill-trajectory pairs (7, z) by prepro-
cessing according to f(7) and rearranging according to the chosen forward or reverse
form of the ML For example, in DADS training data is of the form ((s,z),s’), whereas
in DIAYN it is of the form (s, z).

a) Skill prior

In most prior works, the skill prior p(z) over the skill space Z is chosen and fixed
beforehand, although in VIC the authors experiment with learning p(z). They
argue that if distinct skill embeddings lead to very similar trajectories, this should
be reflected in p(z). However, in DIAYN, the authors point out that this leads
to adverse training dynamics, wherein only a small subset of the skill space is
actually trained. Since skill discovery is a fundamentally bottom-up approach, it is
not really clear why we would choose to learn p(z).

Since we want to maximise the entropy H(p(z)) in the reverse form of the MI,
the obvious choice is a uniform distribution over Z, and this is adopted by most
prior works. In most prior works, Z is chosen to be discrete, with the number
of skills N = |Z| left as a hyperparameter. N induces a tradeoff: large N are
difficult to learn but have the potential to be more descriptive (due to the diversity
assumption), whereas small N are easier to learn but less meaningful. In VALOR,
the authors propose a curriculum approach by which N is slowly increased during
training as the skill model becomes more confident. They found that this stabilised

training.
The authors of DADS show how to perform skill discovery with a continuous
skill space Z = [—1,1]P with dimensionality D, with larger D implying a more

expressive skill space, similar to N in the discrete case.

b) Model Architecture

The skill model is usually a neural network. DIAYN uses a simple MLP, DADS
uses a mixture-of-experts MLP (probably because it is learning a more complex
function), and in VALOR the authors use a recurrent LSTM model. This is generally
a consequence of the chosen objective and skill prior, and the structure of the
training data implied by these. The authors of VALOR were unable to identify a
meaningful difference between the skills learned with their recurrent model and
those learned by DIAYN.

19

3. Related Works

c) On-/Off-Policy samples

In principle, VOD methods require on-policy samples. This is because the skill
model is trained on (7, z) pairs, and defines the reward function for RL training.
Assuming that skill model and policy are still improving, we do not want to update
them with outdated training data. The authors of DADS show how to extend it to
use off-policy experience when training discriminator and policy by introducing
an importance sampling ratio [36]. However, other works [22, 8, 37] are unable
to verify that importance sampling actually confers any benefit, and suggest that
off-policy samples may be used without any correction.

3. RL algorithm

In general, these approaches specify "any RL algorithm", and then choose a popular
instance like Proximal Policy Optimization (PPO) [38] or SAC in their implementation.
There are a few traits of RL algorithms that may inform this choice, such as whether
they are on- or off-policy, or whether they presume a discrete or continuous action space.
The authors of DIAYN and DADS emphasise the use of entropy regularisation, which
may play a special role in skill discovery, as described in section 2.4.3. The integration
of universal value function approximators [12] allowed the learning of multi-modal
policies, and therefore the step from intrinsic motivation to skill discovery.

3.1.1. Explore, Discover, Learn

In VOD approaches, there is a circular dependence between the different components of the
algorithm: the skill model requires a good policy to collect trajectory-skill pairs for supervised
learning, and the policy requires a good skill model to provide a learnable reward function.
DIAYN describes this as a cooperative game, in that the optimal solution requires the skill
model and policy learner to push each other up. In practice, this approach leads to unstable
optimisation targets which make learning more difficult. The authors of EDL argue that this
leads to poor coverage of the state space.

In Explore, Discover, Learn [33], the authors separate the skill discovery process into 3
distinct stages: Exploration, Skill discovery, and Skill learning. VOD repeats each of these
stages in every iteration, whereas each is executed to convergence once in EDL. The difference
is illustrated in figure 3.1. For simplicity, like in the paper we consider only the DIAYN
objective Z(s; z) rather than the more general Z(f(7);z) (as introduced in section 2.4).

To accomplish this, EDL uses an exploration method (SMM [39]) to learn the distribution
of states to be encoded in skills, but we could use an oracle or expert trajectories instead. The
skill model is learned as the decoder of a VAE, thus we are performing unsupervised learning
rather than supervised learning, as in VOD. The final stage of learning a skill-conditioned
policy remains the same, although in EDL this stage may be thought of as embedding the

20

3. Related Works

VoD EDL
Explore
—> P(S) MP”(S) = Ez[p”(slz)] P(S) ~ U(S)
State
Marginal Matching
(SMM)
l (55 2 i1, ~ Pa(s12)
(i=1,..5 ~ P(5)
p@|s) ~ quz|s) Discover
‘ p(s|z) = p,(s]|2)
Pls) = gyzls)
l q,(z|s)
r(s,z) = log g,(s|2) a4zl s)
7 ~p@)
Learn
r(s,z) =loggy(slz")
4 mg(als, z) 7 ~p(2)
i nyals,z)

Figure 3.1.: EDL reduces skill discovery to three distinct stages

learned skill model in the MDP.

Thus, EDL modularises skill discovery. Each of the three stages may be evaluated effectively
independent of the other stages, and new research in exploration and generative modelling
may easily be integrated. The algorithm is overall more complex, in that we replace exploration
with random rollouts from a given policy with a targeted exploration mechanism, and simple
supervised learning of the decoder net with fully unsupervised learning. On the other hand,
the iterative nature of VOD methods can make them very difficult to debug. We may also
view EDL as an off-policy skill discovery method, whereas VOD methods are in principle
on-policy. The approach taken in EDL allows us to perform each stage multiple times without
having to return to the previous stage to do so, which should make for more sample-efficient
and transferrable learning.

21

3. Related Works

3.2. HRL with learned options

Since skills are analogous with options, they go hand in hand with hierarchy. VOD methods
learn a single layer of the hierarchy, given the reward-free environment, which might then be
used to optimise a task reward. In this section we describe how options can be learned within
the context of hRL. We discuss two related works in more detail because they are particularly
relevant to this thesis.

3.2.1. Latent space policies for hRL (SAC-LSP)

SAC-LSP [40] offers a general view of how latent space policies can be incorporated into a
hierarchy. Here, we sequentially learn K layers of a hierarchy. For each layer, we learn
a latent-conditioned policy 7g(als,z) using a maximum entropy RL algorithm (like SAC)
that maximises the layer-specific reward R;. R; could be some low-level heuristic reward
(for example encoding a navigation prior in locomotion environments), but also an VOD
intrinsic reward. During training, latent variables z € Z sampled from the latent prior p(z)
are augmented with the state. This allows us to use Z as the action space of the next layer:
the agent selects latents z, and then samples an action from the given policy 775. Therefore,
we embed 77y in the MDP transition dynamics, exposing a new MDP within which the next
task R;11 should be easier to solve.

The authors describe two mechanisms for learning such a policy: layerwise, by training
a single layer, freezing its weights, and then training the next layer on top of this, and
end-to-end, learning all layers simultaneously. The authors show how to accomplish the latter
using invertible transformations to embed latent policies in the environment, meaning that
each layer can undo actions chosen by lower layers if they are detrimental to the current task
reward.

SAC-LSP makes no assumptions about how latent variables z are sampled during training,
i.e. about when an option can be initiated or when it terminates. Many of the VOD-approaches
presented in section 3.1 test their algorithm in a hierarchical context by instantiating SAC-LSP:
they train skills, then freeze the resulting skill-conditioned policy, and then use these skills to
optimise some task reward.

3.2.2. HRL by discovering Intrinsic Options (HIDIO)

In HIDIO [8], the authors integrate VOD into a worker-scheduler hierarchy, instantiating an
end-to-end latent space policy. In this, the higher-layer policy optimises some task reward,
while the lower-layer policy learns skills in an unsupervised manner. However, in VOD skills

22

3. Related Works

are learned without any knowledge of task reward; in HIDIO, skills are learned preferentially
that achieve the task reward. The authors compare the bottom-up (VOD) and end-to-end
approaches, and find that skills learned with VOD are often not useful in later achieving the
task reward. Thus, they deem end-to-end training necessary. Although the interplay between
worker and scheduler technically necessitates an on-policy RL algorithm, the authors also use
SAC to allow reuse of training data. Because they introduce an external reward into the skill
discovery process, HIDIO does not aim to perform unsupervised hRL, but rather uses VOD
to enhance previous approaches to hRL.

Unlike works in VOD, HIDIO emphasises the importance of resampling options throughout
the episode. This has the benefit that options don’t radiate out from the starting state distri-
bution p(sp), and that options must be learned such that they can effectively be sequenced.
Without loss of generality, they assume an option is resampled every T steps. They also
define a meta-MDP when a skill is initiated, in which each state stores the trajectory from the
initation state to itself, which allows them to easily compare different mutual information
based objectives.

3.2.3. Option Hierarchies

As demonstrated in SAC-LSP, a hierarchy can also be learned with more than 2 layers. Two
recent works [25, 41] build option hierarchies in which the degree of temporal abstraction
increases for every layer. They learn K policies, setting the option length T' for policy 7! to
be an integer multiple of the length for /=1, Thus, the option length in terms of steps in
the environment is an exponential function of the form T' = ¢ * T"~!. DEHRL [41] performs
multi-layer unsupervised option discovery, as studied in this thesis, but uses a different
technique to implement the diversity assumption.

Stochastic Neural Networks for HRL [7] builds a 2-layer hierarchy using stochastic neural
networks, and uses a mutual-information objective Z(z;c) relating skills z and the agents
center of mass c. Rather than training both neural networks end to end, the authors find that
training the top layer on a frozen lower one already lead to good results. In a later work [32]
the authors show that introducing top-down feedback further improves performance.

Hierarchical Actor Critic [24] gives further insight into how all the layers in such a multi-layer
hierarchy could be trained simultaneously and independently. Much of the paper describes
the techniques used to enable stable learning in spite of the non-stationary transition dynamics
at each layer, induced by the changing lower layers. They argue that if all lower layers 0, ...,i — 1
were already optimal, we should be able to train layer i on top of these, and the authors show
how we can simulate this before the lower layers have been trained. The authors find that
each additional layer improves performance.

23

4. Problem Statement

In this thesis, we aim to synthesise information-theoretic skill discovery and hierarchical
reinforcement learning, to more effectively learn skills in an unsupervised manner. This
is motivated by the intuition that skills reflect only a very abstract notion of a temporally
extended behaviour, and that we may consider skills to be composed of other skills.

The general problem statement for skill discovery is as follows: given the reward-free MDP
M = (S, A P,p(so)), learn a skill-space (7(+|-,z), Z). In VOD, a skill is executed by choosing
the skill variable z € Z, and rolling out the corresponding skill-conditioned policy 7t(als, z)
for a given number of time-steps T > 1. Thus, a skill discovery method is a function :

Y: (M, T)— (rt(als,z), 2) 4.1)

In this definition, we emphasise the significance of skill length T. Fundamentally, for large T,
the diversity assumption becomes easier to fulfil. We argue that this is undesirable, because
the diversity assumption is the underlying mechanism by which ¢ can learn skills. If skills
are not forced to diversity, they continue to behave randomly. On the other hand, if T is
smaller, using skills instead of primitive actions can only confer a smaller benefit.

We can extend the skill discovery problem statement to learning a hierarchy of skills. Thus,
given the reward-free MDP M, we want to learn a sequence of skill-conditioned policies
and K is the number of layers in the hierarchy. To this end, we can alter the definition of ¥
to return a modified MDP, in which we replace the given action space with the skill space:
¥ (M, T) = (S, Z,Pz,p(s0)). Here, Pz describes the modified environment transition
dynamics after embedding the learned skills. We may then apply a given skill discovery
method ¢ recursively to retrieve the hierarchical skill discovery method ¥:

Y. (M, lp, (Ti)izl,..,K) — (ﬂi(ﬂ‘S, Z)/Zi)izl,...,K = ¢(¢((¢(M, Tl)/), TK—l)/ TK) (42)

Here, T; corresponds to the skill length at the i-th layer of the hierarchy, counted in the
number of policy decisions made (rather than the actual number of environment steps). Thus,
given a skill discovery problem (M, T') which we could solve directly with ¢, we can specify
K and a corresponding skill-length sequence (T;);—1 .. g, ideally with T = [TX, T;. This way
we can use the hierarchical method ¥ instead of .

24

4. Problem Statement

To ensure that ¢ is usable in this hierarchy, the skills it learns must fulfil certain constraints:

1. ¢ must be recursively applicable, i.e. i must return an environment to which ¥ is
applicable. Prior works that impose a discrete skill space on a continuous action space
do not immediately fulfil this assumption, because RL-algorithms are usually only
applicable to one of the two.

2. We should be able to sequence skills within an episode. This is equivalent to requiring
that skills should retain their meaning outside the given starting state distribution p(so).

As in SAC-LSP, we could also require that the function f : f(i) = ¢ that embeds skills
learned by ¢ in the environment be invertible, so that each layer can undo actions of previous
layers. We leave this to future work, and consider only the simpler layerwise training
procedure, by which the weights of policies 7', ..., 7' ! are frozen when training the i-th layer
policy 7. If ¢ does not learn skills that sufficiently cover the space of possible behaviours,
then we may cripple an agent using these skills, an effect we can expect to be compounded
with more layers. Layerwise training with weight-freezing may be thought of as the strictly
bottom-up approach to learning a skill hierarchy.

4.1. Motivation

There are a number of reasons to introduce such a hierarchy into skill discovery. We present
our intuition here, based on the notion of skill discovery as a compression in the space of action-
sequences of length T. For the sake of argumentation, we consider the problem (M, T) with
discrete and finite S, A and Z. Consider the space T! of all trajectories of length T. Not all of
these trajectories will be worth distinguishing depending on the environment, and we may
group those that are similar enough into a skill. The objectives in VOD then define how we
determine similarity: which trajectories can we group?

Under this intuition, the definition of a skill changes from being a useful behaviour, to
merely being any temporally extended behaviour. The usefulness of a skill, like that of an
action, is determined after it is already learned: when it is used. Many skills will turn out to
be generally useless, but the policy using them should be able to learn which skill is useful,
and where.

This also allows us to reason about the size of the space we are compressing. In the most
general case, every possible trajectory is abstracted into some skill (we are performing lossless
compression). We must sample these trajectories from the environment, therefore we argue
that the problem of effectively encoding 77 is in some way proportional to the size of this
space, which is exponential in T. For example, if we want to learn skills of length 100 over

25

4. Problem Statement

a 2-dimensional discrete action and state space, without making any further assumptions
we have to consider 2! sequences. If we decompose this problem into a 2-layer hierarchy
with T = (10,10), we consider 2!° sequences in the first layer, and |Z|'¥ in the second.

The cardinality of Z defines the compression. For example, for 100-dimensional Z, this
100

equates to a reduction in the total number of sequences considered of ————— ~ 10*!. For
1 : 210 4 10010

| Z] = 210, every possible action-sequence is assigned its own skill, and there is no reduction
in complexity. In this way, the introduction of hierarchy carries with it the potential to
exponentially reduce the size of the search space, and each layer should simplify the problem
for the following layer.

As a result, the discriminability objective is satisfied at different scales. If it is satisfied
for layer i, i.e. we have performed a sufficiently lossless compression, we assume that we
can repeat this process for layer i + 1, using the skills of layer i. This gives us more flexible
control over the problem-size (skill length) T; of each layer. Moreover, we should see improved
exploration when using temporally extended behaviours [42], and therefore better coverage
of the state space. Again, this is because the compressed search space should result in a
simpler problem for the agent.

4.2. Success Indicators

There are no clear metrics (like a task-specific reward) to evaluate the success of our final
algorithm, thus we will propose some indicators of success and otherwise restrict evaluation
to qualitative judgements. Because skills are learned in a task-agnostic fashion, the only way
to evaluate them effectively is to determine how pretraining with them can improve learning
in different problem settings (like imitation learning, multi-task learning, or sparse-reward
tasks). We use DIAYN as a baseline, because it is simple to implement and representative of
VOD methods.

1. Discriminator confidence E..p[logqe(z|7)]: the discriminator should be able to map
trajectories to skills confidently.

2. Cumulative intrinsic reward achieved by policy: if the policy effectively generates the
skills learned by the discriminator, it achieves higher intrinsic reward.

3. State space coverage: the agent should learn skills that sufficiently cover the state space.
This measures the exploration behaviour of the algorithm, and will have to be evaluated

qualitatively in most environments.

4. Sample efficiency: we measure sample efficiency mostly by the number of environment

26

4. Problem Statement

steps taken by the agent, as this is the usually the most time-consuming part of learning.

5. Stability: the random seed and stochasticity of the algorithm should not significantly
affect success according to the described indicators.

6. Performance on a set of evaluation tasks: we may compare a regular agent with one
that received pretraining via unsupervised skill discovery, and compare asymptotic
performance and sample efficiency over a series of test-tasks. If skills are truly task-
agnostic, we would expect them to lead to performance gains on most/all tasks.

Since we can solve the same problem with (K > 1) and without (K = 1) a hierarchy, the
success indicators are the same for the hierarchical as for the flat skill discovery method.

4.3. Environments

We will being by thoroughly evaluating our method in a simple 2d-navigation environment
(2dNav), because we can immediately inspect learning with a single image. We can reason
more easily about what we would like our skills to look like if our agent learned optimally.
This allows us to discuss the impact of the various hyperparameters, and hopefully provide
us with some intuitions for less easily inspected environments. This environment is also
easily extended into higher dimensions (e.g. 3dNav). Actions directly manipulate the position
of the agent. Thus, for d-dimensional navigation, dim(S) = dim(A) = d.

However we will also run the agent in the OpenAI Gym robotics environments, built on
the MuJoCo physics engine. These environments are significantly more complex, but also
allow for much more interesting and semantically diverse skills, and better reflect the target
environments of this algorithm. Here we have two environment-classes: Fetch and Hand
(figure 4.1)1.

Both of these come with different tasks, or goals, defined with sparse rewards (rather
than the shaped rewards used in previous locomotion environments like the OpenAI Gym
Halfcheetah, Ant or Humanoid). In the Fetch environments, we manipulate a robotic arm to
reach a goal position or move around a puck with the gripper. The state of the Fetch arm
is 25-dimensional and goals are 3-dimensional, specifying a target position for the block or
gripper. The Hand environment features a robotic hand, with similar position- and object-
manipulation based goals. This makes them particularly interesting for skill discovery because
we can use the different goals for meta-testing. For example in the Hand environments, we
may learn skills that manipulate only the hand, and then finetune these in the reach or object
manipulation tasks. In the goal-free Hand environment without any objects, dim(S) = 63

Thttps:/ /openai.com /blog/ingredients-for-robotics-research /

27

4. Problem Statement

(a) FetchPickAndPlace-v0 (b) HandmanipulateBlock-v0

Figure 4.1.: OpenAl Gym Robotics environments

and dim(.A) = 20. Hand environments that manipulate objects expose 7-dimensional goals,
and in the HandReach environment a 15-dimensional goal specifies the target end positions
of all fingertips.

28

5. Hierarchical Skill Discovery

In this section, we describe our algorithm for hierarchical skill discovery (hVOD). The
approach closely mirrors prior related works in implementation details, with the fundamental
goal being to learn composable skills via an algorithm that is recursively applicable to the
same MDP. In this thesis, we attempt to develop the simplest instantiation of the class of
methods introduced in the problem statement. To this end, we begin by describing our
hierarchical method ¥, and then the underlying skill discovery method 3, which we call
cDIAYN to highlight its similarity with the prior work. A summary of the approach is given
in figure 5.1.

Reward-free MDP (S, A, P, p(Sp))

hcDIAYN

cDIAYN

Collect experience D =

{(s,a,s’,2);} using Ty (5,2 Bo pEdNies
/ .
i
Train discriminator q,, (z|s) with Embgd myin the
samples (s, z)~D environment
N\
[g (als, z)

Train policy 4 using SAC with
intrinsic reward (s, a, §', z,1;)
=

skill hierarchy (b, qf’,)i=1,_._ X

Figure 5.1.: Schematic overview of hcDIAYN, as instance of layerwise approach of building a
hierarchy of skills via VOD

29

5. Hierarchical Skill Discovery

5.1. Deep Skill Hierarchy

In this thesis, we choose to train our hierarchy in a layerwise manner, without feedback from
higher layers being passed down. We consider this a reasonable assumption in the skill dis-
covery domain, which is fundamentally bottom-up, although it may limit the expressiveness
of higher layers, especially if the skill discovery method ¢ is only partially successful. The
pseudocode for this training procedure is given in algorithm 2.

Algorithm 2: Learn skill hierarchy

Result: Deep Policy Hierarchy (7! (als,z1), ©*(z1]s,22), .-, T8 (zk 15, zK))
Given: base-MDP M, = (S, A, p, p(so)), number of layers K, skill-length function T;,
Skill discovery method ¢ : M, T — my(als,z), Z;
Initialise ;
fori < 1to N do
L ' (zi_1]s, zi), Zi = (M1, To);
Embed 7t in M,;_; to get skill-MDP M, = (S, Z;, p;, p(s0));

In this, we have also made the assumption that the action space for each layer is only the skill
space of the previous layer. On the other hand, we could formulate the minimally restrictive
action space Z; = AU Z;U...U Z;_1, . In this case, we are using skill discovery merely to
augment the action space of the agent, and we are effectively learning a worker-scheduler
hierarchy, rather than a deep skill hierarchy. We observe a tradeoff between restricting the
agents action space (and therefore search space), and ensuring that the behaviours the agent
can learn are not limited.

This leaves two choices, in the number of layers K, and the layer-skill-length T;, under
the constraint that T ~ []X; T;. A reasonable choice for the skill layer length is a simple
exponential function T; = ¢ * T;_1, where ¢ € N and Ty = 1, for example ¢ = |log, T]. Thus,
in layer j, the agent takes [T._, T; steps in the environment, but only makes T; policy decisions.
As described in [41], we may think of more appropriate sequences with information about
the environment.

In this hierarchy, we have implicitly assumed that every skill may be initiated in every state,
and that every skill terminates after exactly the layer-specific number of steps. In the options
framework, we have assumed that for every option w = (I, 71w, Bw) Of layer i, the initiation
set is I, = S and the termination probability is B, (t) =1 if t == T else 0. The first
assumption is reasonable, because we can let the agent using the learned skills determine this
in a task-specific manner (even if that task is skill discovery). A prior work [8] argues that a
constant skill length can be assumed without loss of generality, although we are not sure how

30

5. Hierarchical Skill Discovery

to reproduce this argument. However, one would expect that if the constant skill length is in
some way limiting, it is less so for smaller T.

This allows us to visualise each skill as a tree, with degree Tx_; on level i. Figure 5.2 shows
a hierarchy with 3 layers and with skill lengths T; = 2, which we compare with the approach
tested in prior works in VOD in figure 5.3.

zz SN

Figure 5.3.: Prior work in VOD, as a special case with K =1and T = 8

This interprets the approach taken in prior work in VOD as the single-layer case of the
proposed hierarchical method. Figure 5.2 also provides an appealing visualisation of the
bottom-up nature of deep skill hierarchies.

5.2. ¢cDIAYN

In this section, we develop a skill discovery algorithm that satisfies the constraints put
forward in section 4. To this end, we extend DIAYN to a continuous skill space Z, and
propose a simple state normalisation mechanism to to force the agent to infer skills from

31

5. Hierarchical Skill Discovery

state-differences rather than states. The pseudocode for our continuous, composable version of
DIAYN (cDIAYN) is given in algorithm 3.

Algorithm 3: cDIAYN

Result: Policy 7tg(als, z), Discriminator g4 (z|s)

Given: skill prior p(z) ~ Z;

Initialize policy 719 and discriminator gy,

while not converged do

Collect M transitions (s,a,s’,z) from the environment, a ~ 7y(+|s,z),s" ~ p(s,a),
resampling z ~ p(z) with state-normalisation every T time-steps and resetting
the environment after H time-steps;

Update discriminator via supervised learning to maximise [E[log q4(z|s)] using
collected transitions;

Relabel collected transitions with intrinsic reward calculated according to
equation 5.3;

Update 7y using Soft Actor-Critic;

5.2.1. Objective

As described in section 3, there are many possible choices for the information-theoretic
objective. Broadly, we want to learn skills that are clearly discriminable from one another,
while each individual skill is in some form predictable. We use the same objective proposed
in DIAYN, because it is conceptually the simplest.

Therefore, we choose to maximise the mutual information between states and skills Z(S; Z).
As in prior works, we further employ entropy-regularisation of the skill-conditioned policy
mg(als, z), which encourages exploration and enhances robustness. This gives us the following
complete objective:

F(0) =I(S; 2) + aH(A|S, 2) (.1)
= H(Z) - H(Z|S) +aH(A[S, 2)

In this, we have chosen to optimise the reverse form of the mutual information.

32

5. Hierarchical Skill Discovery

5.2.2. Continuous Skill Prior

Unlike DIAYN, we adopt a continuous uniform distribution for p(z) and choose Z = [-1,1]P,
where D represents the dimensionality of the skill space. We think that imposing a discrete
prior on the skill space limits the expressiveness of skill variables z € Z, thus less effectively
guiding agent behaviour. DIAYN learns skills that induce a uniform distribution over their
respective partition of the state-space [4]. Unless you choose a large number of skills, it
is likely that this will result in a very coarse guiding signal, at best moving through the
partition in a coordinated way. We also believe that a continuous skill space can produce
lower-variance (and therefore more predictable) behaviours (as in DADS) which are more
useful in a hierarchy.

This continuous latent space allows for a more natural interpolation between different
skills. Although prior works like DIAYN and VALOR show that we can interpolate between
two discrete skills, much of the interpolating space should effectively be meaningless since
it is not learned. By the interpolating space, we mean all vectors [0,1]N where N is the
number of skills, of which the space of one-hot vectors of length N is a subspace. In the
continuous version, the entire latent space is utilised and meaningful. This also makes the
latent space more compact. When using a discrete skill space, skills are usually encoded as
one-hot vectors. The more skills we wish to learn, the larger the skill vectors.

Moreover, prior works build on Soft Actor-Critic (SAC), a state-of-the-art entropy-regularised
RL algorithm, which assumes a continuous action space. Thus, learning a discrete skill space
would preclude use of the same RL algorithm on the learned skill space in the hierarchy
describe in section 5.1. This, along with the environments we intend to test the method in, is
the main reason we chose a continuous skill prior. However, we should also be able to replace
SAC with a discrete RL algorithm like DQN and learn a discrete skill space, or map actions
from continuous to discrete (like DIAYN) and vice versa.

5.2.3. Optimising the Objective

The choice of a continuous skill space forces us to optimise the objective slightly differently.
The authors of DADS showed how to learn skills with a continuous skill space, and we follow
their approach. For completeness, the derivation is included in the following.

We may approximate Z(S; Z) as follows:

33

5. Hierarchical Skill Discovery

I(S/Z) = 1Ez~p(z),s~7‘((z) log

= IIE:‘z~]y(z),s~7r(z) 108

21Ez~p(z),s~n(z) log P(Z) :|

Here we have used the non-negativity of the KL-divergence to variationally lower bound
the objective using a learned discriminator model g4(z|s) to approximate the intractable dis-
tribution p(z|s). We can improve our approximation by increasing E|[log g4 (z[s) — log p(z)]
(maximising the approximate lower bound), and by minimising E [Dxr(p(z|s) || g4 (z|s)] (tighten-
ing the variational lower bound).

The latter amounts to maximising the likelihood of samples from p (collected with rollouts
in the environment) under g4. As in DADS, we can write the gradient for our skill model as
follows:

Vs [Dii(p(zls) || 94(zls))] = VoEs,: {k’g q;;((zz’rs))}

= —VyE;:[loggy(z|s)] (5.2)

We can maximise E [log g, (z|s) — log p(z)] under our policy 7 via reinforcement learning,
by maximising with the following intrinsic reward:

qp(2ls)
rz(s,a) = log ,
ar Lic1 9p(zils)

zi ~ p(z) (5.3)

Here we approximate |17| [qp(z|s)dz &~ L YF_; q4(zi|s). In the discrete version of DIAYN,
the one-hot categorical skill mapping incorporates the notion of mutual exclusivity of skills,
i.e. that each state should only map to one skill. This is lost when using a continuous mapping,
in that the discriminator is not immediately penalised for learning a high probability g4 (z|s)
for many z, given the same s. We compensate for this by the above softmax-like output
normalisation. Thus, 7t is encouraged to produce transitions that are discriminable, i.e. that
assign a high probability to only one skill. Equation 5.3 is maximised when the probability
e (z|s) is large, but g4(z;|s) is small. Where, in the discrete case we can marginalise over the
entire space Z, in the continuous case we sample from Z.

34

5. Hierarchical Skill Discovery

Unlike discrete DIAYN, it is not immediately clear how we could apply this softmax
normalisation during discriminator training. However, this is where the cyclical nature of the
described skill discovery methods arguably adds flexibility to the framework. Because the
reward encourages the policy to produce trajectories that are discriminable, the discriminator
receives more discriminable samples.

Although the previous derivation is analogous to the one performed in DADS, the justi-
fication is slightly different. In DADS, the authors approximate p(s'|s) = [; p(s'|s, z)dz =
Y 1q4(s'ls,z). This difference is just a consequence of our choice of the reverse MI. If
we chose the forward MI, we would perform a similar marginalisation to approximate the
intractable p(s) using the policy induced distribution E,c z[p(s|z)]. However, we choose the
reverse MI to mirror DIAYN.

5.2.4. State Normalisation

Skills learned by prior methods are not composable, because during learning they sample a
skill at the beginning of every episode and keep it constant throughout. Thus, skills radiate
out from p(sp), and are therefore less meaningful when initiated outside this distribution.
However, for skills to be composable, they should retain their meaning for broader starting
state distributions.

As discussed in section 4.1, we think of skill discovery as a compression in the space
of trajectories. As a result, and especially in this thesis, the skill length is an important
hyperparameter, and longer sequences should increase the difficulty of the skill discovery
problem. This is alleviated in prior works by formulating time-step based objectives, like
Z(s;z) and Z(s';z|s), arguing that we can differentiate whole trajectories from them. The
states of the skill-trajectory encoded in z are necessarily correlated, because we assume that
z is sampled and fixed for a given number of time-steps T. Thus, if we assume skills are
always sampled in some fixed state sy, subsequent states s retain information about where
in the trajectory they are (relative to the fixed sp). When we resample z for different s, it
becomes unclear what behaviour we wish the policy to fulfil: should they move towards the
same target state? This is not necessarily possible in T time-steps, and we would expect it to
be very different depending on the sampled sp.

Behaviours learned by DIAYN and DADS are strongly tied to the states on which they
are learned. This is why resampling skills during training breaks learning: the agent has no
control over which skill is sampled. It also implies that in prior work in VOD, we can not use
learned skills to reach out of distribution states, limiting the potential of learned skills for
aiding exploration.

To resolve this, we propose to normalise states within a skill-MDP with the starting state.

35

5. Hierarchical Skill Discovery

Thus we allow policy and dynamics models access only to normalised states §; = s; — sp, where
s; is the state of the agent on the i-th time-step after initiating the current skill. As a result,
So = 0 for all skills, and each normalised state $; contains trajectory information, because it
relates s; to the starting state. Thus, the skill variable z imposes a consistent skill-MDP around
o, and both models now learn to achieve repeatable state-differences. In the above examples,
using a skill z is equivalent from any starting point, in that it should move through roughly
the same normalised states (0,57, 52, ...57). Thus, with state-norm our objective is effectively
Z(As;z), defined by the trajectory preprocessing function f(T) = so,51 — So, ..., St — So- This
also strengthens our understanding of skills as dynamic behaviours.

By resampling skills with state-norm throughout the episode, we can approximate a much
broader starting state distribution p(sp) than given in the base-MDP. Hopefully, because of
this resampling mechanism, the skills learn to move between different stable states, i.e. states
from which many skills are applicable. Thus, we are not actually trying to learn p(so) = U(S),
but this more constrained distribution of stable states. How often we resample a skill during
learning should therefore be reflective of how much we expect transition dynamics to vary
around different states. If (like in unbounded 2dNav), they do not, we do not need to
resample. We can simply learn skills without state-norm and then apply it during skill use.

On the other hand, in a maze the transition dynamics are different near the walls, through
which the agent can’t move (a step that ends outside a wall is projected to the closest point
in the maze). This makes learning while resampling skills throughout the episode difficult,
but it highlights the semantic difference between skills learned with and without state-norm.
Without it, we assume skills must cover the entire space of possible behaviours, whereas with
state-norm we learn skills that should make covering this space easier when using them. If
skills are not composable, then we can only solve a given task if we have already learned a
specific skill that does so.

To offer a more interesting example, we may consider a simulated humanoid environment.
Here a stable state might be standing upright, and we might have skills for taking a step with
the left or the right leg, both returning to this stable step. By performing the two alternately,
we can form the more temporally abstracted behaviour of walking. We believe that state-norm
introduces an inductive bias that could encourage learning of such skills.

5.2.5. Temperature annealing

Although many prior works use entropy-regularised RL to formulate objectives of the form
Z(f(7);z) +aH(als,z), they usually simply fix the temperature « = 0.1. Section 2.4.3 provides
a motivation for considering this hyperparameter more closely.

In maximum-entropy RL, entropy-regularisation is used to encourage exploration. In skill

36

5. Hierarchical Skill Discovery

discovery, this entropy prolongs skill learning, because it makes it more difficult to match
the sampled trajectories with the corresponding skill variable. This corresponds with a
smoothing of the trajectory space. However, we ultimately want to learn low-variance skills,
therefore with a low entropy, and more clearly disentangled from one another. This suggests
an intermediate approach, in which we begin training with high « to encourage exploration,
and end training with low «.

It has been observed that training a f-VAE with p = 1 is inferior to different weights for
the regularisation term (e.g. g = 0.1 [30]), and that annealing f throughout training generally
leads to improved performance. [43] describes a cyclical annealing schedule, increasing and
then resetting 8 several times throughout training (5.4).

Annealing schedules

3.0 1

0.1

step

Figure 5.4.: Annealing schedules for the temperature in VOD

The authors of SAC also proposed a version (EC-SAC) of their algorithm in which « is
learned, arguing that the policy should be allowed to behave more deterministically in areas
of the state space in which it can act confidently (and more randomly in others). Gradients
for a are computed with equation 5.4, where # is the target entropy.

J(a) =Eqsur | —alogr(als) —aH (54)

37

6. Experiments

In the following, we will evaluate the success of our method in a simple navigation environ-
ment, and then in a complex robotics task. In doing so, we hope to answer the following
research questions:

1. Does cDIAYN learn discriminable skills?

2. What is the effect of skill length T on skills learned by cDIAYN?

3. Can we learn deep option hierarchies by repeatedly applying cDIAYN?

We use the navigation environments because they allow for simpler inspection of results,
to gain a better understanding of the changes proposed in the previous section. We test

our method in the robotics environments to evaluate whether cDIAYN can scale to high-
dimensional state- and action- spaces.

6.1. Simple navigation environments

We visualise skills spread evenly over the 2-dimensional skill space [—1,1]? (figure 6.1).

1

-1

-1 0 1

Figure 6.1.: cDIAYN learns diverse skills with a continuous latent space.

38

6. Experiments

We find that cDIAYN learns lower-variance behaviours than the discrete version, leading
us to believe that the low variance of skills cited in DADS [5] may be a consequence of the
continuous skill space, rather than the modified objective Z(s'; z|s). The learned skills cover
the reachable portion of the state space well, with each skill ending in a small distribution of
states. This means that skills learned by cDIAYN converge to goal-reaching behaviours.

We can also effectively showcase the semantic difference in skills learned with and without
state-norm. Figure 6.2 shows cDIAYN when intialised from a state outside the training
distribution. Many of the skills could not be executed within T timesteps in this case, making
them less useful in our proposed hierarchy.

2 2

-2 T -2 T
-2 0 2 -2 0 2
Figure 6.2.: Out of training distribution use of skills in cDIAYN. Here, we learned 8 skills,
with each colour representing one skill.

Moreover, without state-norm there is little value in sequencing skills at all, since the
agent can never leave the distribution of states induced by the skill-conditioned policy. The
difference is shown in figure 6.3.

3

1 - 1 {

.
0 0 0 Ko
0.‘ %
-1 -1
-1 0 1 - 0 1
-3

-3 0 3

Figure 6.3.: With state-norm we can use skills to reach out-of-training-distribution states.
Left: learned skills. Middle: skill use without state-norm. Right: skill use with
state-norm.

39

6. Experiments

— [-0.3, 1.0]
[0.3, 1.0]
— [1.0, 1.0]
- [1.0, 0.3]
04 - [1.0, -0.3]
— [1.0,-1.0]
[-0.2,-0.2]
= [-0.4,-0.4]
[-0.6, -0.6]

-1 0 1

(a) Skill interpolation (b) Discriminator visualisation

Figure 6.4.: In (a) we choose different z € Z and rollout the corresponding skill. (b) visualises
q¢(z|s) for s € [—1,1]2, z = (2o, z1).

6.1.1. Smoothness

It is possible to interpolate between skills in DIAYN. However, much of the interpolating
space is meaningless, since we never use it during training. By introducing a continuous skill
space, we learn skills with interpolation in mind. We show this in figure 6.4.

Crucially, the skill discriminator learns a smooth skill space, despite the diversity assump-
tion not explicitly being backpropagated through it.

6.1.2. Skill Dimensionality

In cDIAYN, the dimensionality of the skill space determines the size of the bottleneck,
replacing the number of skills in DIAYN. We would like to get a better understanding of
its importance in simple navigation environments. We compare cDIAYN in 2dNav with
|Z| € 1,2,3 and show the results in 6.5. We see that for a one-dimensional skill space,
cDIAYN learns a function with only linear variability for g4(z|s), with smooth interpolation
along a single axis. We observe the same effect when we test | Z| = 2 in a 3-dimensional
point environment, in that skills learned cover states along a 2-dimensional hyperplane in
the 3-d space. We view this as a property of the discriminator function we are learning: a
d-dimensional latent space can express variability along d dimensions. Thus, although in
2dNav a 2d skill space seems reasonable, by using higher dimensionality we may be able to
capture properties of trajectories, rather than states.

Interestingly, in figure 6.5 we attain a qualitatively better solution when we choose a
3-dimensional skill space to encode the 2-d state, in spite of attaining a lower discriminator
accuracy and significantly lower intrinsic reward. We think that this is a consequence of
high variance in the discriminator, since the diversity assumption is not included in the

40

6. Experiments

|z1=1 |z1=2 1z1=3
2 2 2
3 7
0 ® 0 =) 0 . =
-
-2 -2 : -2
-2 0 2 =2 0 2 -2 0 2

o
<)
|
|
—
S)

Elqq(z]|s)]
o
(o)}
Elrz(s)]
L
o

o

EN

|
S
o

0 10 20 30 0 10 20 30
epoch epoch

Figure 6.5.: cDIAYN in 2dNav for varying dimensionality of the latent space

discriminator loss. Thus, although [E[g,(z|s)] increases, the intrinsic reward does not, because
the discriminator may assign high probability g4 (z|s) to many skills z for each s.

6.1.3. Escaping Randomness

Before any training, and therefore during initial experience collection, the skill-conditioned
policy is just a random policy. This random policy induces a distribution p%(s) = E.[p(s|z)]
over states s € S, over which we then perform skill learning with our discriminator model
q¢(z|s). For maximal generality of learned skills z, we would hope that p,(s) approximates
something like a uniform distribution over all states. The authors of DIAYN show that this is
in fact the optimal solution for their method, with each skill z inducing a uniform distribution
p(s|z) over its partition of the state space and skills being uniform in Z.

However, the initial distribution p%(s) is likely not uniformly distributed over the state
space. Therefore, throughout training the state distribution of the skill-conditioned policy
must expand. This is what we consider the fundamental value of the diversity assumption:
it is beneficial for the policy to reach new states, which it can effectively assign to one skill.
However, the starting distribution for skill discovery is always induced by a random policy
over the action space.

As we see in figure 6.6, the state space coverage of a random policy in 2dNav degenerates
as we increase the length of rollouts. Although in each case, the policy could reach every part
of the state space (6 * T = 1), in the case § = 0.01, T = 100 the policy would have to take 100

41

6. Experiments

steps in the same (any) direction to reach the edge of the state space.

16=0.01,T=1001 6=01T=10 . 6=1T=1

Figure 6.6.: Visualising p2 (s) for different 2dNav environments. We collect 100 rollouts with
step size ¢ and rollout length T.

This raises the question: how does the initial distribution of states pY, affect the distribution
of states p, covered by the final skill-conditioned policy? In the ideal case, skill discovery
learns skills that cover the entirety of the reachable state space, regardless of p%. Again, we
can test this in 2dnav, by performing skill discovery with varying step-size and skill-length.
To perform a fair comparison, we keep all parameters constant between cases (including the
number of skill and policy model train steps), only scaling the total number of environment
steps taken and the size of the replay buffer proportionally with the skill length. Figure 6.7
shows that skill discovery converges to a good state-coverage much more quickly for shorter
trajectories. State-coverage increases throughout training as skills diversify, but for larger T
skills must diversify further, from a more restrictive p2(s).

6=01T=10 E=10 0 =0.04,T=25 E=10 6 =001, T=100, E=10

6=01T=10 E=10 6=0.04,T=25 E=30 6=00LT= 100, E=100

Figure 6.7.: Comparing p.(s) after E epochs (green) and p%(s) (blue) for different 2dNav
environments.

This provides a justification for our integration of hierarchy into VOD. We can use learned
skills to improve exploration in the beginning of skill discovery, and thus more quickly learn

42

6. Experiments

skills for larger T.

6.1.4. Goal-attaining Behaviours

We also see an undesirable training dynamic, both in the continuous and discrete versions
of DIAYN. When we let training continue for longer skills begin collapsing to a smaller
distribution of states around sy, as visualised in figure 6.8. p, expands initially because skills
diversify, i.e. the agent reaches new states which are more easily discriminable. However,
eventually the agent learns to discriminate states closer to sy and reaches them more quickly,
making them more desirable. We think this is a consequence of choosing an objective that
encodes states, rather than trajectories. Every skill ultimately becomes strongly associated
with one small portion of the state space, rather than all of the states in the trajectory it was
supposed to encode. Skills become goal-reaching behaviours, and skill discovery becomes a
mechanism for goal-setting and learning the corresponding reward-function for GCRL. There
is nothing inherently wrong with this (we can reasonably define a skill as reaching some goal
within T time-steps), but it deviates from our desired interpretation of skills. Moreover, many
of the T time-steps may be devoted to maintaining the achieved goal state, further removing
skills from dynamic behaviours. It also means that the problem difficulty is not directly tied
to the skill length, possibly diminishing the benefit of the hierarchy.

10 epochs 30 epochs L 50 epochs
1 S 72 1
o »
04 €~ @ 0 P 0 ‘c"y
%N
e
-1 ‘ ‘ i -1 T] i
-1 0 1 -1 o 1 -1 0 1
0o Discriminator Accuracy Intrinsic Reward
101
0.8
0.7 —20 -
0.6
_30 4
0.5 — T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Figure 6.8.: px(s) collapses to states near sy if we let training carry on for too long. We see
that learned skills correspond to simple goal-reaching behaviours. Although skills
are learned with 6 = 0.1, T = 20, we set T = 100 here to emphasise the described
effect.

The hierarchy may help to counteract this, in that we can stop skill discovery once discrimi-
nator accuracy stops increasing, and then learn the next level of the hierarchy, benefiting from

43

6. Experiments

improved exploration by using learned skills.

6.1.5. a-annealing

We find that the entropy-regularisation term has a significant impact on the skills ultimately
learned by the algorithms. This is clearer in the continuous version of DIAYN, because it
eliminates the choice of the number of skills, which fulfils a similar role. Choosing small
alpha impedes learning, because the policy takes a long time to achieve a good coverage of
the state space (figure 6.10), and can only converge when this coverage is achieved. For large
a, the algorithm converges more quickly, but again covering a smaller area around sy (figure
6.9).

Figure 6.9.: cDIAYN after 100 epochs for different fixed values of «

localoptima.png

Figure 6.10.: Training with low temperature can get stuck in local optima. Comparing « = 0.1
(top), and & = 1.0 (bottom) after 10, 30, and 60 epochs.

We find that annealing a leads to more stable training and better state space coverage,
primarily because it helps to avoid the local optima in figure 6.10. The cyclical annealing
schedule did not lead to noticeably different results, and we were unable to learn with
EC-SAC, because a diverges and the policy regresses to a random policy, though we are not
sure why.

6.1.6. Hierarchy

We now decompose the problem of learning skills of length 100 in 2dNav into learning a
hierarchy with T = (10, 10), and compare the results in figure 6.11.

We keep the number of environment steps per epoch constant (at 1000 steps), therefore

44

6. Experiments

T=10 T=(10,10) T=100
1 4 4
!
)]
0+ 0 0
Y p.
K £
-1 T -4 . -4 T
-1 0 1 -4 0 4 -4 0 4
Discriminator Accuracy Intrinsic Reward
1.0 A N
* 081 5 — T=(10,10)
= EN —20 T=100
T 06
0 10 20 30 0 10 20 30
epoch epoch

Figure 6.11.: Skills learned in 2dNav with hierarchical and flat skill discovery.

the skill model and policy of the second layer (T = (10,10)) see only every 10th environment
step. Both the layered and the flat hierarchy are trained for the same total number of epochs,
however skills learned by the hierarchical policy cover a slightly larger portion of the state
space. We find that as we reduce T the attain-target behaviour becomes less pronounced,
suggesting that skills can not diversify merely based on the final state. This makes it more
difficult for the agent to assign a small distribution of states to a skill, which may be the
reason for the lower accuracy and reward.

We can also learn a 3-layer hierarchy with T = (5,5,5), finding that this results in signif-
icantly better coverage of the state space (figure 6.12). Interestingly, the layers using skills
rather than primitive actions converge more quickly, in spite of the stochasticity of skills.
This may be because the learned skills favour states further away from sy, whereas primitive
actions are uniform in [—0.1,0.1].

Each subsequent layer takes 5 times as many steps per epoch in the environment. This
exposes a potential weakness of the method, or perhaps just a property of learning in a
hierarchy. As the number of time-steps in the environment between policy decisions increases
(for higher layers), the training data for this layer becomes increasingly sparse relative to
the actual amount of environment interaction. We could pass the intermediate steps as well,
reasonably so with the state-based DIAYN objective. We choose not to do this here, since it
weakens our desired understanding of the skill hierarchy. We suspect that the benefit this
might have would be reduced when choosing a sequence-based objective.

We observe a fundamental tradeoff in optimising the diversity assumption. The longer the
trajectories are that we are encoding, the easier it is to learn discriminable skills (measured by
g4 and r;), because the trajectories we sample from the environment are increasingly sparse

45

6. Experiments

Elqslz]s)]

T=5 T=(5.5) T=(5.515)
0.5 2.5 10 f
AN -
0.0 4 0.0 4 \,< 0 R /
/ R 7
\ R S
f
-0.5 . -2.5 . _10 .
— 0.0 05 ~2.5 0.0 2.5 _10 0

0.8

0.6 q

Discriminator accuracy

Intrinsic reward

Elrz(s)]

T T T
5 10 15
epoch

T T
10 15
epoch

T=5
T=(5,5)
T=1(5.5,5)

Figure 6.12.: A 3-layer skill hierarchy.

in the space of trajectories of length T. However, skills derive their meaning in diversifying
from one another: if this is too easy, we attain a weaker solution. We see that discriminator
accuracy and intrinsic reward are not perfect proxies for what constitutes successful skills.

6.2. Robotics Environments

We now examine whether cDIAYN learns discernible and composable skills in more complex
robotics environments. Unfortunately, it is difficult to represent trajectories through high-
dimensional space on paper. In previous works, the authors validated their methods in
various contexts, like task success with a given external reward or imitation learning. We
believe that a broad test suite of this kind is the only way to effectively test the learned skills,
because individual skills need not necessarily be interpretable to a human to be useful later.
Unfortunately we did not have time to conduct such experiments, nor to tune the many

different hyperaparameters. Therefore we use this section merely to demonstrate that our
method scales to more complex environments.

6.2.1. Fetch

In Fetch environments, we learn skills that move the robotic arm to different gripper positions.
cDIAYN converges very quickly (about 100 epochs, comparable with 2dNav) with relatively
short T = 20, covering the range of possible gripper positions (6.13). As a result, there is little

46

6. Experiments

to be gained from introducing the hierarchy, and we find the two learn the same simple set
behaviours. This also showcases a problem with learning skills in the complete absence of
task rewards, as much of the state space covered by the arm can never lead to any useful
behaviours, and a more significant source of novelty (the object) is completely ignored.

Figure 6.13.: Skills learned by cDIAYN in the FetchPush environment.

Figure 6.14 can interpolate along a single axis to see a smooth change in the final position of
the gripper. In environments with objects, the skills largely ignore the objects, likely because
these interactions are relatively sparse in the space of possible behaviours. There are skills
that open and/or close the gripper in some consistent way, but not specifically to pick up the
object.

Figure 6.14.: Skill interpolation along a single axis in Fetch.

6.2.2. Hand

We experiment with 3- and 4-dimensional skill spaces, finding that if we increase the dimen-
sionality further, the skills learned by cDIAYN become less diverse. In environments with
objects, no interesting manipulation behaviours were learned. Figure 6.15 shows the end-state
of 16 skills sampled from p(z) for an average run.

In figure 6.16 we compare single-layer cDIAYN learning for different sequence lengths.

47

6. Experiments

Figure 6.15.: Skills learned by cDIAYN in the HandReach environment.

Again, we see that we achieve higher discriminator accuracy and intrinsic reward for longer
sequence lengths, but without attaining qualitatively better skills. we find the number of
skills sampled per epoch to be an important hyperparameter. This makes sense: we want
to make sure that every model update includes diverse z € Z. For longer skills, this means
longer epochs, and therefore fewer model updates per environment step. Not increasing it
leads to unstable training. This may be because the marginalisation in the intrinsic reward
requires exponentially more samples for every additional latent dimension. Although we do
learn distinct behaviours, it is clear that the learned skills cover only a small subset of the
space of possible behaviours.

Figure 6.17 shows that we can again loosely interpolate behaviours, suggesting that the
skill space learned by cDIAYN is reasonably smooth. It also showcases how the skills learned
by VOD differ from our intuitions. We would like to learn skills that isolate parts of the
state space and action space, like bending a single finger. In Fetch we would like to see a
skill that corresponds with opening/closing the gripper. However, we don’t think the chosen

48

6. Experiments

Discriminator accuracy Intrinsic reward

0.8
—10

0.6 - —20

=30 10
50

0.4
—40 1 4! 100

T T T T T T
0 50 100 150 0 50 100 150

Figure 6.16.: Comparison of convergence behaviour of cDIAYN for T € 10, 50, 100.

objective prioritises such behaviours. Rather, we learn behaviours that move every joint at
every time-step, in some repeatable way (in that a skill z initiated from some state s will
consistently produce the same behaviour). This may be why prior works [4, 5] restricted the
observations seen by the discriminator to only the (x,y) coordinates or the center of mass of
the agent, creating spaces in which diversity matches our understanding.

. Q‘m&r \wﬁ \w)

Figure 6.17.: Skill interpolation in Hand.

Learning is possible when resampling skills throughout the episode, but against our
expectations we find this to be the case both with and without state-norm. However, the
behaviours learned by the two are semantically different. Again, we can learn a second
layer of skills on top of the first, however the learned skills do not appear qualitatively any
better than those learned by the corresponding flat approach, and overall take longer to learn
because of the sparsity of training data at the second level. We were not able to learn 3 layers
in a stable manner, but we think this is likely possible with enough training time.

49

7. Discussion

We now perform a more holistic review of the results of our experiments in chapter 6. Overall,
we showed that it is possible to learn a multi-layer hierarchy of skills in an unsupervised
manner, although we could demonstrate only limited usefulness. In this section, we will
discuss the applicability, the advantages and the weaknesses of our approach.

7.1. Applicability

Because cDIAYN operates in the reward-free MDP (S, A, T, p(sp)), human domain exper-
tise is required only to set the hyperparameters. However, we would expect a successful
configuration to work in different environments, because few assumptions are made before
training. Although the VOD family of approaches is applicable to any MDP, cDIAYN and
its hierarchical variant can only be applied in environments with continuous state- and
action-spaces.

7.2. Advantages

The primary goal of this thesis was to learn a hierarchy of skills in an unsupervised manner.
As a result, the diversity assumption underlying skill discovery is fulfilled at different scales,
and we are able to encode the inductive bias that skills are composed of other skills, making
them more dynamic.

Skill discovery methods explore the environment by diversifying. If this is too simple, the
skill variable z can offer only a limited guiding signal for the policy 74(a(s,z). In discrete
DIAYN, 7t(+|-,z) approximates a uniform distribution over its partition of the state-space. If
the partition corresponding to a skill is too large, the policy continues to behave randomly.
The same intuition extends to cDIAYN. This is why, although our experiments showed worse
results on our chosen metrics (discriminator accuracy and intrinsic reward achieved), we
think that skill discovery can be applied more effectively for shorter skills.

50

7. Discussion

Of course the goal is to learn more temporally extended behaviours, and this is enabled by
the hierarchy. To this end, we proposed a simple normalisation mechanism for skill discovery,
which allows us to learn skills that are applicable outside the distribution of starting states
p(so), and can be applied to any skill discovery method to learn a semantically different
kind of skills. Resampling skills throughout the episode also provides a basis for continual
learning, since we have removed the need for environment resets. Most of our experiments
were conducted this way.

We also showed that the marginalisation over the skill space Z to compute the intrinsic
reward in DADS implements the diversity assumption, in that it is applicable in cDIAYN
with similar results but this alternative justification. This reflects the intuition that we can
marginalise over all skills for finite Z but must sample for continuous skill spaces. This
suggests that other prior works (e.g. [3, 6]) which use a discrete skill prior can be adapted in
the same way.

Similarly, we introduced annealing schedules for a weighting the entropy-regularisation
term, inspired by the success of similar approaches in the training of VAE.

7.3. Weaknesses

Although we showed that learning a hierarchy of skills is possible in principle, we were unable
to show much benefit from it. This might be a matter of finding the right hyperparameters, but
it might also be a problem with the underlying skill discovery method and idea. Overall, the
broadness of the skill discovery problem statement makes evaluating success quite difficult,
and as such we were forced to rely on qualitative judgements more than we would like. For
the same reason, a lot of hyperparameters were kept at some (we think) reasonable default
value, without our having much of an intuition for their effect. More testing in a broader
range of environments would be required to really assess the merits of our approach, together
with more clearly defined goals for skill discovery. We discuss some ideas for this in section
8.1.3.

In retrospect, a VOD method that works on a discrete action space would have allowed us
to better evaluate the intuition underlying this thesis, described in section 4.1. However, we
wanted to maintain comparability with prior works in VOD, which were applied mostly in
continuous environments. We don’t expect the intrinsic reward used here (and in DADS) to
scale to higher-dimensional latent spaces, again because samples of the skill variable z for
marginalisation become increasingly sparse in Z.

It is also clear that the simple layerwise training procedure described in section 5.1 leads to
a very rigid hierarchy. It makes the unreasonable assumption that we can completely cover

51

7. Discussion

the space of possible behaviours in the first layer. For example, if we learn skills for the
robotic hand without access to the block or pen, and then introduce one of these objects, we
can only learn very temporally extended skills to manipulate them. If we wanted to learn
high-frequency (low-layer) behaviours to manipulate the object, we would have to retrain the
lower layer, which in turn would mean that we have to retrain every subsequent layer. This
may be possible, but it is certainly undesirable. While the increase in temporal abstraction as
we move up the hierarchy seems reasonable (and is fundamental to this thesis), it necessitates
top-down feedback, i.e. the ability of higher layers to modify the behaviour of lower layers.
Barring this, it is likely that we cripple the agent with every additional layer, because we may
not be able to perfectly solve the skill discovery problem at a given layer before training the
next.

We also think that the purely state-based objective is misplaced in skill discovery because
skills are only loosely related to trajectories. It encourages the attain-target-state behaviours
described in section 6.1.4. We think encoding trajectories might ease learning for shorter
skill-lengths. However, for shorter trajectories, the information loss induced by state-norm is
also stronger. We think this can be circumvented by allowing the policy to see the full state
s rather than the normalised one 3, and only using the latter in training the discriminator.
Moreover, although we use an off-policy RL algorithm, we use only on-policy data.

We also don’t backpropagate the diversity assumption through the skill-mapping, meaning
that it can learn a function that assigns high probability g4 (z|s) for diverse z without immedi-
ately being penalised for it. The iterative nature of skill discovery algorithms compensates for
this, but it can still lead to an inconsistent reward function for the RL-agent.

Overall, our experiments in the robotics domain call into question the usefulness of
completely unsupervised skill discovery. In the Fetch environment, most of the learned skills
have no potential to be useful in any way later. We had hoped that the hierarchy would
encourage more abstract behaviours by manipulating the object, but this was not the case.

52

8. Conclusion

In this thesis, we present cDIAYN, a method for learning composable skills that is recur-
sively applicable to the same environment, allowing us to learn a hierarchy of skills in an
unsupervised manner. We successfully replaced the categorical skill prior in DIAYN with
a continuous one, and introduce a-annealing as already used in the training of VAE. We
analyse this method in a simple navigation environment, and provide preliminary results in
high-dimensional state- and action-spaces suggesting its limitations. Moreover, we provide
a simple implementation based on the recent TF-Agents API. Overall, we hope that this
thesis provides a solid foundation for further work in what is an exciting research topic. We
summarise some possible directions for future work in the following, organised by the aspect
of the algorithm they address.

8.1. Future Work

8.1.1. Skill Discovery

In this thesis, we described the family of skill discovery approaches we refer to as Variational
Option Discovery algorithms, and provided a single instantiation that fulfils the criteria that
make it usable in the proposed hierarchy. However, we can imagine many such instantiations
(like the previously mentioned discrete-discrete mapping). DADS would be immediately
applicable within our skill hierarchy. We outline some of the possible sources of variability
within VOD, and give directions for further research.

Objective

Perhaps the most obvious parameter to investigate further is the information-theoretic objec-
tive Z(f(7);z), more specifically the preprocessing function f. This implies different model
architectures of the skill mapping and rl-agent (although the latter may not be necessary [44]).
In particular, the use of recurrent models that don’t decompose a trajectory into constituent
time-steps would align more closely with the intuition presented in section 4.1, and we think

53

8. Conclusion

the hierarchy can have a clearer impact here. State Marginal Matching [39] extends the skill
discovery objective with terms that explicitly encourage improving state coverage p(s), and
approximating some given distribution over states p*(s).

We can introduce more complicated functions for f, for example ones that hide part of the
state. We could use this to formulate an agent curriculum at a very holistic level. For example,
in the hand environment we could learn skills for each finger individually, communicating
to the agent that each finger represents a separate functional component. After learning
skills that manipulate the hand, we could learn skills that manipulate only the block. A
similar idea was put forward in a recent paper [MUSIC], in which the authors define an
MI-based intrinsic reward Z(S,, S;) by which the agent (whose state is given by S,) learns
to manipulate its surroundings S;. Although we do not immediately see a way to compose
different objectives in a single layer (aside from simply adding them up), this is easily done
between different layers.

It would also be interesting to study how |f(7)| affects learning. fpIAYN generates lots of
training data, because a (7,z) is turned into (s;, z) pairs, whereas for f(T) = T we generate a
single sample. Since neural networks require large amounts of training data to learn, perhaps
the apparent success of DIAYN in comparison with similar prior works was to some extent
because of this.

Reusing off-policy samples

[36] shows how we can extend our method to reuse off-policy samples, which has the
potential to significantly improve sample efficiency. A simple way to do this would be to
train the skill-mapping in an on-policy manner, while training the rl-agent off-policy. This
is possible by relabelling old experience (s,4,s’,z,7,4) using the reward-function r, defined
by the up-to-date skill-mapping. In principle, this does not even require an importance
sampling ratio, since transitions (s, a,s’,z) that are unlikely under the current skill-mapping
simply receive a low reward, and prior works have found limited usefulness of such ratios
[revistingER]. Building on this, we could perform much more aggressive data augmentation,
by relabelling transitions (s, a,s’) with skill variables z that were not used to generate the
transition. This can be thought of as a kind of Hindsight Experience Replay [45], a technique
that has displayed significant benefits in sparse-reward setting. In the skill discovery context,
this reflects the intuition that we use the intrinsic reward to embed the skill-mapping in
the environment via RL. In particular, this could help to counteract the increasingly sparse
training data received from the environment by higher layers. [46] provides motivation for
exploring data augmentation in RL further.

In a similar vein, the authors of HIDIO build a meta-MDP, in which states store the
skill-trajectory leading up to them. This allows them to test multiple objectives against

54

8. Conclusion

each other simultaneously. A similar construction would be interesting for skill discovery,
although we would have to collect on-policy data corresponding to each objective to update
the discriminator.

Diversity assumption

We use a very crude instantiation of the diversity assumption in this thesis. To ensure that
q¢(z|s) is different from q¢(2'|s) for z # z’, we estimate IEz[q4(2'|s)] and assign high reward
when g4 (z|s) is larger than this expected value, and low reward when it is lower. Perhaps
there is a way to encode a stronger notion of smoothness here, for instance regularising
with a KL divergence term. Intuitively, we would like to encode the bias that parts of the
skill-space Z that are "further apart" are also more different. Although it appears as though
this behaviour is achieved in cDIAYN (because of the smooth skill space), we think that this
could be encoded more effectively.

Building on the VAE analogy

Prior works have shown that with a sufficiently engineered feature space, RL may be overkill
to optimise an external reward [47]. Particularly in skill discovery, the reasons for using
reinforcement learning become somewhat blurred. Since we control the skill length, we can
ensure that long-term credit assignment is not necessary, and the skill-mapping produces a
dense reward signal. It would be interesting to compare the performance of SAC with that
of a simple feed-forward neural network or linear controller for the policy 7y (als, z), in the
context of skill discovery. It would be straightforward to introduce entropy-regularisation,
so we should not expect this to hinder exploration, reducing the role of RL to performing
reward backup.

Self-consistent Trajectory Autoencoders [48] build directly on the notion of skill discovery
as trajectory compression. EDL (see section 3.1.1) offers another alternative approach to
skill discovery, that more directly builds on VAE. It would be interesting to compare the
performance of EDL in our hierarchical framework.

Leveraging Meta-RL

Meta-learning and skill discovery may be viewed as complementary to one another: skill
discovery learns to propose and solve tasks within the defined distribution p(z), whereas
meta-learning provides a framework for learning to learn within a given task distribution.
This synergy is taken advantage of in [49]. Broadly, the task of Meta-RL is to adapt quickly

55

8. Conclusion

to any task within a given distribution, using experience from samples of this distribu-
tion. In the authors words, their method "can be thought of as automatically acquiring an
environment-specific learning procedure”. The authors use DIAYN in their method, but any
task distribution learning method (like VOD) can take this role.

8.1.2. Hierarchy

Training the hierarchy in a strictly layerwise fashion leads to a very rigid structure, and
arguably wastes a lot of environment interaction that could be used to improve the model. We
could incorporate top-down feedback by continuing to train layers 0, ...,i — 1 while training
layer i, since we continue to sample skills from these lower layers. In this way, how the skills
are actually used can shape them, and higher layers at least theoretically preserve the ability
to enact any behaviour. This is a very simple modification that we think has promise, at the
very least to improve sample efficiency. In this setup, although no actual rewards are passed
down from higher layers, the lower layers continue to learn in conjunction with higher layers.

On the other hand, prior works like [40, 8, 24] have showed how we could learn multiple
layers of the hierarchy simultaneously, as discussed in 3. Particularly SAC-LSP provides
interesting insights for ensuring that suboptimal lower layers don’t cripple the agent, as we
observed our layered approach is likely to do. The authors of HIDIO similarly posit that joint
training of both layers in their worker-scheduler hierarchy was necessary for task success.

An important topic that was unfortunately completely omitted from this thesis, is how to
actually use the hierarchy. For instance, we would expect that an external task requires the
agent to act at different levels of temporal abstraction, perhaps increasing the granularity of
behaviour when longer behaviours lead to insufficient task progress. As an example, consider
the Fetch environment: moving the gripper to the object is a more temporally extended
behaviour that requires lesser precision, but actually picking up the object when the gripper
is close enough may require more precision.

8.1.3. Algorithm Evaluation

Reproducibility and comparability are fundamental issues in any research area. Because of
their broad goal, skill discovery methods are inherently difficult to evaluate. We demonstrated
in this thesis that the two fundamental metrics (discriminator accuracy and intrinsic reward
achieved) do not perfectly capture our understanding of successful skills. We could come
up with other metrics, like some measure of the state space coverage, but we think the most
effective way to test how beneficial learned skills can be, is to use them. The changes made
in this thesis (in particular reducing the skill length) arguably make the learned skills even

56

8. Conclusion

more difficult to inspect against human intuitions of skills, particularly as we increase the
dimensionality of the latent space.

Ideally, we could place an agent in a rich environment, let it learn independently for a while,
and then present it with a set of tasks across which we measure the benefit of unsupervised
interaction with the environment, similar to meta-testing in Meta-RL.

Another open question is how closely we can expect our intuitions for diverse skills to
align with those learned during skill discovery. For instance, in the hand environment we
would like to (for example) see skills manipulating individual fingers. Primarily, we would
like to see skills that control different isolatable functional components. Is this part of an
optimal solution, and our agent is simply not achieving it? Or should we not even expect to
see this in an optimal solution? In [6], the authors give a pessimistic view of this.

57

A. General Addenda

A.1. Implementation

Our implementation' based on the Tensorflow Agents APIL The implementation is divided
broadly into rollout-driver, skill-model and policy learner, reflecting the three stages in each
iteration of VOD. The skill discovery base class manages the data flow between them and
implements the training loop. The code was run on Ubuntu 20.04 with Nvidia GeForce 2080
GPU, as well as Mac with M1 chip.

The skill model is a simple neural network with two hidden layers and a probabilistic
output layer. The output layer is a mixture of independent gaussians, where we usually fix the
variance to 0.1, and then squash this distribution to the range [—1, 1]. For every experiment
we use the same network architecture between discriminator and SAC models, with two
hidden layers of size varying between 128 and 300. We keep the number of samples from the
skill prior constant across experiments, although this is in all likelihood a parameter you need
to tune. Our initial hyperparameter configuration follows that used in DADS. The robotics
environments require the recently open-sourced MuJoCo physics engine.

A.2. Hyperparameters

We provide a default hyperparameter configuration for hcDIAYN, training a 2-layer skill
hierarchy.

1h’ctps: / / github.com/maxf98/thesis

58

A. General Addenda

Hyperparameter ‘ Value
Number of layers K 2

Skill lengths T (10, 10)
Skill prior p(z) U([-1,1]%)
Skill dimensionality d 2
Number of prior samples for r, 400
Replay buffer size 1000
Episode length H 1000
Apply state-normalisation True
Discriminator fully connected layer params (128, 128)
Fix discriminator variance True
Initial « 3.0
Target « 0.1

« anneal steps 4000

« anneal period None
Collect steps per epoch 1000
Train batch size 128
Discriminator train steps 32

SAC train steps 128

Table A.1.: General hyperparameters

Hyperparameter \ Value

Fully connected layer params (128, 128)
Optimizer Adam [Adam]
Learning rate 3%107*
Alpha loss weight 0

Target update tau 0.005

Target update period 1

Discount factor vy 1.0

Table A.2.: SAC hyperparameters

59

List of Figures

1.1.

2.1.
2.2.
2.3.

3.1.

4.1.

5.1.
5.2.

5.3.
54.

6.1.
6.2.

6.3.

6.4.

6.5.
6.6.

6.7.

6.8.

6.9.

TheRLIoop.

A simple autoencoder Lo
Visualising different f(7) for a short trajectory in2-d..
The skill variable z is an information bottleneck in VOD.

EDL reduces skill discovery to three distinct stages
OpenAl Gym Robotics environments

Schematic overview of hcDIAYN, as instance of layerwise approach of building
a hierarchy of skillsvia VOD
Deep skill hierarchy with K=3and T; = (2,2,2)
Prior work in VOD, as a special case with K=1land T=8
Annealing schedules for the temperaturein VOD

cDIAYN learns diverse skills with a continuous latent space.
Out of training distribution use of skills in cDIAYN. Here, we learned 8 skills,
with each colour representing one skill.
With state-norm we can use skills to reach out-of-training-distribution states.
Left: learned skills. Middle: skill use without state-norm. Right: skill use with
state-norm. Lo
In (a) we choose different z € Z and rollout the corresponding skill. (b)
visualises q¢(z[s) fors € [=1,1)%, 2= (20,21)- -+« « v v v v v i
cDIAYN in 2dNav for varying dimensionality of the latent space
Visualising p%(s) for different 2dNav environments. We collect 100 rollouts
with step size § and rolloutlength T.
Comparing p(s) after E epochs (green) and p%(s) (blue) for different 2dNav
environments.
pr(s) collapses to states near sy if we let training carry on for too long. We see
that learned skills correspond to simple goal-reaching behaviours. Although
skills are learned with § = 0.1, T = 20, we set T' = 100 here to emphasise the
described effect.
cDIAYN after 100 epochs for different fixed valuesof w

60

List of Figures

6.10.

6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.

Training with low temperature can get stuck in local optima. Comparing

« = 0.1 (top), and « = 1.0 (bottom) after 10, 30, and 60 epochs. 44
Skills learned in 2dNav with hierarchical and flat skill discovery. 45
A 3-layer skill hierarchy. o o o 46
Skills learned by cDIAYN in the FetchPush environment. 47
Skill interpolation along a single axisin Fetch. 47
Skills learned by cDIAYN in the HandReach environment. 48
Comparison of convergence behaviour of cDIAYN for T € 10,50,100. 49
Skill interpolationin Hand. 49

61

List of Tables

3.1. VOD algorithms and their objectives

A.l. General hyperparameters
A.2. SAC hyperparameters

62

Bibliography

(1]
(2]

[10]

[11]

[12]

[13]

[14]

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

A. G. Barto and S. Mahadevan. “Recent advances in hierarchical reinforcement learning”.
In: Discrete event dynamic systems 13.1 (2003), pp. 41-77.

K. Gregor, D. J. Rezende, and D. Wierstra. “Variational intrinsic control”. In: arXiv
preprint arXiv:1611.07507 (2016).

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. “Diversity is all you need: Learning
skills without a reward function”. In: arXiv preprint arXiv:1802.06070 (2018).

A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. “Dynamics-aware unsuper-
vised discovery of skills”. In: arXiv preprint arXiv:1907.01657 (2019).

J. Achiam, H. Edwards, D. Amodei, and P. Abbeel. “Variational option discovery
algorithms”. In: arXiv preprint arXiv:1807.10299 (2018).

C. Florensa, Y. Duan, and P. Abbeel. “Stochastic neural networks for hierarchical
reinforcement learning”. In: arXiv preprint arXiv:1704.03012 (2017).

J. Zhang, H. Yu, and W. Xu. “Hierarchical Reinforcement Learning By Discovering
Intrinsic Options”. In: arXiv preprint arXiv:2101.06521 (2021).

V. R. Konda and J. N. Tsitsiklis. “Actor-critic algorithms”. In: Advances in neural informa-
tion processing systems. 2000, pp. 1008-1014.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. “Human-level control through deep
reinforcement learning”. In: nature 518.7540 (2015), pp. 529-533.

M. E. Taylor and P. Stone. “Transfer learning for reinforcement learning domains: A
survey.” In: Journal of Machine Learning Research 10.7 (2009).

T. Schaul, D. Horgan, K. Gregor, and D. Silver. “Universal value function approxima-
tors”. In: International conference on machine learning. PMLR. 2015, pp. 1312-1320.

A. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. “Visual reinforcement learning
with imagined goals”. In: arXiv preprint arXiv:1807.04742 (2018).

D. Ghosh, A. Gupta, and S. Levine. “Learning actionable representations with goal-
conditioned policies”. In: arXiv preprint arXiv:1811.07819 (2018).

63

Bibliography

[15] R. Houthooft, X. Chen, Y. Duan, J. Schulman, E. De Turck, and P. Abbeel. “Vime:
Variational information maximizing exploration”. In: arXiv preprint arXiv:1605.09674
(2016).

[16] S. Mohamed and D. J. Rezende. “Variational information maximisation for intrinsically
motivated reinforcement learning”. In: arXiv preprint arXiv:1509.08731 (2015).

[17] J. Achiam and S. Sastry. “Surprise-based intrinsic motivation for deep reinforcement
learning”. In: arXiv preprint arXiv:1703.01732 (2017).

[18] A. Aubret, L. Matignon, and S. Hassas. “A survey on intrinsic motivation in reinforce-
ment learning”. In: arXiv preprint arXiv:1908.06976 (2019).

[19] A.S. Polydoros and L. Nalpantidis. “Survey of model-based reinforcement learning:
Applications on robotics”. In: Journal of Intelligent & Robotic Systems 86.2 (2017), pp. 153—
173.

[20] R.S. Sutton, D. Precup, and S. Singh. “Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning”. In: Artificial intelligence 112.1-2
(1999), pp. 181-211.

[21] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. “Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation”. In:
Advances in neural information processing systems 29 (2016), pp. 3675-3683.

[22] O. Nachum, S. Gu, H. Lee, and S. Levine. “Data-efficient hierarchical reinforcement
learning”. In: arXiv preprint arXiv:1805.08296 (2018).

[23] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K.
Kavukcuoglu. “Feudal networks for hierarchical reinforcement learning”. In: Interna-
tional Conference on Machine Learning. PMLR. 2017, pp. 3540-3549.

[24] A.Levy, R. Platt, and K. Saenko. “Hierarchical actor-critic”. In: arXiv preprint arXiv:1712.00948
12 (2017).

[25] C. Chuck, S. Chockchowwat, and S. Niekum. “Hypothesis-Driven Skill Discovery for
Hierarchical Deep Reinforcement Learning”. In: 2020 IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 5572-5579.

[26] C. E. Shannon. “A mathematical theory of communication”. In: The Bell system technical
journal 27.3 (1948), pp. 379-423.

[27] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A.
Gupta, P. Abbeel, et al. “Soft actor-critic algorithms and applications”. In: arXiv preprint
arXiv:1812.05905 (2018).

[28] C. Marsh. “Introduction to continuous entropy”. In: Department of Computer Science,
Princeton University (2013).

[29] D. P. Kingma and M. Welling. “An introduction to variational autoencoders”. In: arXiv
preprint arXiv:1906.02691 (2019).

64

Bibliography

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner. “beta-vae: Learning basic visual concepts with a constrained variational
framework”. In: (2016).

C. Colas, T. Karch, O. Sigaud, and P.-Y. Oudeyer. “Intrinsically motivated goal-conditioned
reinforcement learning: a short survey”. In: arXiv preprint arXiv:2012.09830 (2020).

A. C. Li, C. Florensa, I. Clavera, and P. Abbeel. “Sub-policy adaptation for hierarchical
reinforcement learning”. In: arXiv preprint arXiv:1906.05862 (2019).

V. Campos, A. Trott, C. Xiong, R. Socher, X. Gir6-i-Nieto, and J. Torres. “Explore,
discover and learn: Unsupervised discovery of state-covering skills”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 1317-1327.

D. Warde-Farley, T. Van de Wiele, T. Kulkarni, C. Ionescu, S. Hansen, and V. Mnih.
“Unsupervised control through non-parametric discriminative rewards”. In: arXiv
preprint arXiv:1811.11359 (2018).

V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. “Skew-fit: State-covering
self-supervised reinforcement learning”. In: arXiv preprint arXiv:1903.03698 (2019).

A. Sharma, M. Ahn, S. Levine, V. Kumar, K. Hausman, and S. Gu. “Emergent real-world
robotic skills via unsupervised off-policy reinforcement learning”. In: arXiv preprint
arXiv:2004.12974 (2020).

W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland, and
W. Dabney. “Revisiting fundamentals of experience replay”. In: International Conference
on Machine Learning. PMLR. 2020, pp. 3061-3071.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy
optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017).

L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov. “Efficient
exploration via state marginal matching”. In: arXiv preprint arXiv:1906.05274 (2019).

T. Haarnoja, K. Hartikainen, P. Abbeel, and S. Levine. “Latent space policies for hierar-
chical reinforcement learning”. In: International Conference on Machine Learning. PMLR.
2018, pp. 1851-1860.

Y. Song, J. Wang, T. Lukasiewicz, Z. Xu, and M. Xu. “Diversity-driven extensible
hierarchical reinforcement learning”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 33. 01. 2019, pp. 4992-4999.

O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine. “Why does hierarchy
(sometimes) work so well in reinforcement learning?” In: arXiv preprint arXiv:1909.10618
(2019).

H. Fu, C. Li, X. Liu, J. Gao, A. Celikyilmaz, and L. Carin. “Cyclical annealing schedule: A
simple approach to mitigating kl vanishing”. In: arXiv preprint arXiv:1903.10145 (2019).

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. “Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model”. In: arXiv preprint arXiv:1907.00953
(2019).

65

Bibliography

[45]

[46]

[47]
[48]

[49]

M. Andrychowicz, E. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, P. Abbeel, and W. Zaremba. “Hindsight experience replay”. In: arXiv preprint
arXiv:1707.01495 (2017).

L. Kostrikov, D. Yarats, and R. Fergus. “Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels”. In: arXiv preprint arXiv:2004.13649 (2020).

D. Ha and J. Schmidhuber. “World models”. In: arXiv preprint arXiv:1803.10122 (2018).

J. Co-Reyes, Y. Liu, A. Gupta, B. Eysenbach, P. Abbeel, and S. Levine. “Self-consistent tra-
jectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings”.
In: International Conference on Machine Learning. PMLR. 2018, pp. 1009-1018.

A. Gupta, B. Eysenbach, C. Finn, and S. Levine. “Unsupervised meta-learning for
reinforcement learning”. In: arXiv preprint arXiv:1806.04640 (2018).

66

	Abstract
	Contents
	Introduction
	Preliminaries
	Reinforcement Learning
	Deep Reinforcement Learning
	Multi-task and Goal-conditioned RL
	Intrinsic Motivation
	Model-based RL)
	Hierarchical Reinforcement Learning

	Information Theory
	Variational Autoencoder
	Skill Discovery
	Variational Option Discovery
	Diversity is all you need (DIAYN)
	An analogy with VAE
	Applications

	Related Works
	Variational Option Discovery Algorithms
	Explore, Discover, Learn

	HRL with learned options
	Latent space policies for hRL (SAC-LSP)
	HRL by discovering Intrinsic Options (HIDIO)
	Option Hierarchies

	Problem Statement
	Motivation
	Success Indicators
	Environments

	Hierarchical Skill Discovery
	Deep Skill Hierarchy
	cDIAYN
	Objective
	Continuous Skill Prior
	Optimising the Objective
	State Normalisation
	Temperature annealing

	Experiments
	Simple navigation environments
	Smoothness
	Skill Dimensionality
	Escaping Randomness
	Goal-attaining Behaviours
	-annealing
	Hierarchy

	Robotics Environments
	Fetch
	Hand

	Discussion
	Applicability
	Advantages
	Weaknesses

	Conclusion
	Future Work
	Skill Discovery
	Hierarchy
	Algorithm Evaluation

	General Addenda
	Implementation
	Hyperparameters

	List of Figures
	List of Tables
	Bibliography

