SCHOOL OF COMPUTATION,
INFORMATICS AND TECHNOLOGY

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Robotics, Cognition and Intelligence

Foundation Models for Robotics

Max Fest

SCHOOL OF COMPUTATION,
INFORMATICS AND TECHNOLOGY

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Robotics, Cognition and Intelligence

Foundation Models for Robotics

Foundation Models fiir die Robotik

Author: Max Fest
Supervisor: Prof. Alois Knoll
Advisor: Dr. Zhenshan Bing

Submission Date: March 31, 2024

I confirm that this master’s thesis in robotics, cognition and intelligence is my own
work and I have documented all sources and material used.

Munich, March 31, 2024 Max Fest

Acknowledgments

Thanks Zhenshan, for being an important part of my academic journey.

I want to thank my family for their ongoing and unwavering support, and Vio, for
putting up with me through all of it. I love all of you.

Abstract

Foundation Models encapsulate broad world knowledge that was previously difficult to
integrate into robot learning, enabling a new wave of approaches aimed at grounding
this knowledge in embodied action. Many of these approaches rely on a Large Language
Model to translate human intentions expressed in natural language into robot policies —
building on a fixed set of perception and control primitives for the agent to call. We
propose to extend these approaches by enabling humans to teach the agent new skills, by
iteratively refining behaviours with corrective feedback. Humans naturally understand
the physical world and many of the domains in which we expect robots to operate,
and natural language provides a powerful interface for us to both communicate this
understanding, and to instil human preferences. We argue that prior works have not
sufficiently placed humans at the centre of robot learning, and demonstrate that skills
provide an intuitive mechanism for doing so. This opens the door to fast, language-
based adaptation to new environments.

v

Kurzfassung

Foundation Models biindeln umfangreiches Weltwissen, das zuvor nur schwer in
das Roboterlernen integrierbar war, und ermdoglichen eine neue Welle von Ansétzen,
die darauf abzielen, dieses Wissen in verkorperte Handlung zu tiberfithren. Viele
dieser Ansitze stiitzen sich auf Large Language Models, um menschliche Absichten,
die in natiirlicher Sprache ausgedriickt werden, in Roboterstrategien zu iibersetzen —
basierend auf einem festen Satz von Wahrnehmungs- und Steuerungsgrundfunktionen,
auf die der Agent zugreifen kann. Wir schlagen vor, diese Ansitze zu erweitern, indem
Menschen dem Agenten neue Fahigkeiten beibringen, durch iterative Verfeinerung
von Verhaltensweisen mittels korrigierendem Feedback. Menschen verstehen die ph-
ysische Welt sowie viele der Doménen, in denen Roboter eingesetzt werden sollen,
auf nattirliche Weise, und natiirliche Sprache stellt eine leistungsfahige Schnittstelle
dar, um dieses Verstdndnis zu vermitteln und menschliche Praferenzen einzupréagen.
Wir argumentieren, dass bisherige Arbeiten den Menschen nicht ausreichend ins Zen-
trum des Roboterlernens gestellt haben, und zeigen, dass Fahigkeiten einen intuitiven
Mechanismus bieten, um dies zu erreichen. Dadurch wird eine schnelle, sprachbasierte
Anpassung an neue Umgebungen moglich.

Contents

Acknowledgments
Abstract
Kurzfassung

1. Introduction

2. Preliminaries

2.1. The Human-Agent-Environmentloop
2.2. Reinforcementlearning
221. Rewardshaping
222, Extensions
223. Challenges
2.3. Task-and-Motion Planning
2.4. Learning from demonstrations
24.1. Teleoperation
2.4.2. End-user Programming
2.5. FoundationModels
25.1. Interface e
2.5.2. Foundation Model Agents.
2.5.3. Vision-Language Actionmodels

. Background

3.1. Code-as-Policies e
3.1.1. Benefits e
3.1.2. Limitations

3.2. Language Model Programs for Robotics
3.2.1. Foundation Models for Reinforcement Learning

33. System2 Learning
3.3.1. Learning from Experience
3.3.2. Learning from Human Interaction

O O N OO W

10
11
11
11
12
14
15

Vi

Contents

4. Motivation

4.1. Problem statement
4.2. Skill learning via natural language interaction

5. Method
Tasksand Skills L
Skill Learning
Managing the Context Window

5.1.
5.2.
5.3.

54.
5.5.

5.3.1.

Hints e

Auxiliary Functions L Lo oo
Toy Environment 0.

6. Experiments
Learninga Skill
Learning a Long-Horizon Behaviour

6.1.
6.2.
6.3.
6.4.

6.5.

7. Discussion

Hints

Advantages of learned skills oo o L

6.4.1.
6.4.2.
6.4.3.
6.4.4.
6.4.5.
6.4.6.

Encapsulation,
Interpretabilityo 0L
Defined axes of generalisation
Targeted and deliberate integration of preferences.
Preconditions L.
Continual Learning

Challenges

6.5.1.
6.5.2.
6.5.3.
6.54.
6.5.5.

Limited ability to respond to feedback
Writingcode. Lo
Retrieval
Userexperience
Environment

71. Novelty
72. Limitations e

7.3.

7.2.1.

Evaluation

Future Work e

7.3.1.
7.3.2.
7.3.3.
7.3.4.

More advanced cognitive architectures
Richer primitives 0L
Tailored Environments
Userinterface

26
26
28

30
31
33
36
36
37
38

41
41
44
46
46
47
47
48
48
49
49
50
51
51
53
53
53

vii

Contents

7.3.5. Finetuning . . .

7.3.6. Experiments with non-expertusers

8. Conclusion

A. Code
A.1. Initial set of Examples

A2 Prompts

B. Opening a Drawer
List of Figures
List of Tables

Bibliography

63

64
64
64

68

70

73

74

viii

1. Introduction

The fundamental challenge of robotics is to align robot behaviour with human intentions
and expectations. We want robots that do what we want, how we want it, across a large
variety of tasks, environments, and robot embodiments, and we want them to do it
reliably.

This is an open challenge. While we have successfully deployed robots in very
controlled environments, like the ones found in manufacturing, warehouse logistics,
or even agriculture, we are still a long way from the popular dream of a "household"
robot, that readily handles a variety of chores like folding the laundry, or emptying the
dishwasher.

With the rise of deep learning in the early 2010’s, data-driven approaches took
on a dominant role in robotics research. Deep Reinforcement Learning emerged
as a technique that promised to learn skills purely from trial-and-error interaction
with a simulated environment. However, with a few notable exceptions, successes in
simulation have largely failed to materialise in the real world [83].

A parallel class of methods have attempted to make it possible for humans to "teach”
robots by providing demonstrations of a desired behaviour. This limits the behaviours
the robot can learn to ones that humans can effectively demonstrate, which is not as
constraining as one might think, since there are many "mundane" tasks that we would
like robots simply to take over from humans. We may recall Moravec’s paradox in
observing that these tasks continue to elude robots.

Until recently, we expected robots to operate in a human world, with no under-
standing of this world, and limited ways for us to imbue them with the necessary
understanding. This may have changed with the advent of Foundation Models, large
models pretrained on internet-scale data. Not only do they contain some of the basic
world understanding previous data-driven methods lacked completely, but they enable
a natural-language based interaction with computers. We can now talk to our robots.

A large and rapidly growing body of research is exploring all the ways that these
Foundation Models may be used within the context of robotics. In this thesis, we focus
on a subset of this research that enables non-expert humans to interact with robots
using natural language, by using Large Language Models (like GPT-4 or LLaMa) to
generate python code that controls the robot. Humans are almost universally capable
of evaluating robotic behaviour, particularly in the many simple task domains in which

1. Introduction

“lee that?”
“Perfect, remember that!”

Figure 1.1.: Foundation Models enable a natural language interaction with robots.

we want to deploy them.

While prior works have demonstrated that we can use Large Language Models to
elicit [47] [103] and correct [48] [109] [4] robot behaviours from natural language inputs,
relatively few have imbued them with the ability to adapt their behaviour in a lasting
way in response. One solution to this relies on Retrieval-Augmented Generation to
provide agents with a memory [89] [111] [109] [80]. Building on these works, we propose
a framework for allowing users to interactively teach robots new skills, based on natural
language interaction.

We argue that effectively aligning robot behaviours with human intentions necessarily
requires humans in the loop — and that one of the key advantages of applying Founda-
tion Models to robotics is that they shorten this feedback loop. The method outlined
in this thesis demonstrates one approach for leveraging this potential. Looking ahead,
we hope this could lead to intuitive end-user programming and the crowdsourced
generation of human-verified robotic behaviours.

2. Preliminaries

In this chapter, we introduce the notation we will lean on in the remainder of this thesis,
as well as framing robot learning as an alignment i.e. communication problem. We
begin by introducing the reward-free Markov Decision Process (MDP) (S, A, P):

S — State space: the full representation of agent and environment state, i.e. all the
information the agent has at its disposal to inform its decisions, including sensors,
cameras, proprioception, etc...

A — Action space: the base set of actions the agent can take, which may involve low-level
joint manipulations or more temporally abstracted behaviors.

P:S x A— S - Transition function: probabilistically maps an action in a given state
to the subsequent state, under the current environment dynamics. These dy-
namics are typically unknown, though we assume we can sample from them via
interaction with the environment.

In practice, the state s is always an imperfect and incomplete representation of the
true state space, an assumption modelled explicitly in the Partially Observable MDP
[78], but omitted here for notational clarity.

At every time-step t, given a state s;, the agent chooses an action 4;, bringing it to
the state sy ~ P(s,a¢) (see Figure 2.1). We may term a sequence of such interactions

Sty1 P(St, at)

7 T

-

ar ~ m(a|s)

Figure 2.1.: The agent-environment interaction loop

2. Preliminaries

T = (s0,81,.-,57) € ST a trajectory.

We may view then define a behaviour b € ST we intend to elicit as a desirable or
semantically meaningful trajectory, or an equivalence class [b] of such trajectories, and
the set of all behaviours we want to elicit as B C ST. For example, in a quadruped
robot, walking, running, or hopping would each qualify as distinct behaviours. In
a robotic arm, a behaviour might be grasping an avocado without squashing it, or
flipping a pancake.

The goal then is to learn a policy t : S x A, that chooses actions to achieve the
desired behaviours. Correspondingly, we may define skills as the policies that elicit
these behaviours, and skill-learning as the goal. The skill reliably enacts the behaviours.

Definition 1. A skill z € Z is a policy 7 (a|s) which induces a specific behaviour b.

We refer to Z as the skill space. The skill space is an extension of the action space A
to enable temporally extended behaviours. Importantly, a skill z € Z may build on
other skills. Further, we define tasks:

Definition 2. A task is specified by a set of initial states Z C S and a task-success
function B : ST — {False, True}, for some time horizon T.

We use tasks both to learn and to test behaviours. The set of initial states Z includes
all variations in environment setup for a specific task. We define to determine task
success based on the entire trajectory to highlight that we may also be interested in how
the agent achieves a final state. In practice, task-success has often been determined
purely on the achievement of a final state (see Section 2.2.2). Our definitions of skills
and tasks are in close analogy with options in hierarchical reinforcement learning (see
Section 2.2.2).

The distinction between tasks and skills is a subtle one, and not typically made
explicitly. We make this distinction to emphasise that we are interested in teaching
robust, reusable and repeatable behaviours (skills), while a task is tied to a specific
environment setup and task description. The agent may use skills to solve a task.

Appropriately choosing tasks to elicit and test the desired behaviours is in itself a
challenge, requiring significant human effort. Moreover, task success is only a proxy
for successfully learning a skill. In this thesis, we focus particularly on the interface
provided to humans in aligning robot behaviours.

2.1. The Human-Agent-Environment loop

Aligning robot behaviours with human expectations induces another feedback loop,
visualised in Figure 2.2. What this feedback loop looks like in reality depends heavily on

2. Preliminaries

Set tasks
/—\ K Attempt tasks by using \

’ and/or learning skills
Evaluate skills K *—~ J

Figure 2.2.: The human-agent-environment interaction loop

the exact problem statement, i.e. the environment (S, A, P), and the set of behaviours
B we want to learn.

For example, if the environment dynamics P are near deterministic and known,
and the environment is fully observable (i.e. & is a complete representation of the
environment), the robot is sufficiently simple (dim(.A) is small) and we only want to
learn a single repetitive behaviour |B| = 1, opting to hard-code the behaviour is a
reasonable choice, which ensures full interpretability and modifiability. This ensures a
tight feedback loop between human and agent. We expect the agent to solve a single
task.

On the other hand, if the environment dynamics are unknown and stochastic, the
robot needs to map complex percepts to complex actuations, and we expect it to
learn a wide variety of behaviours, learning-based approaches become more appealing.
However, the typical training times associated with learning-based approaches naturally
extend the time between a human setting a task and evaluating its results, with some
experiments requiring days of training on expensive hardware.

A fundamental consideration in this feedback loop is the interface provided to
humans in this process. What modes of communication exist for the human to adapt
the robots behaviour?

For example, in Reinforcement Learning (Section 2.2), humans communicate a task
by setting a reward function, following intuitions from behaviourist psychology. Good
behaviours are rewarded, bad behaviours are punished. However, the actual learning
process typically also involves extensive environment shaping [64], setting up simulators,
tasks, and/or modifying the state and action spaces. Learning more complex and more
diverse behaviours may take a long time, creating slow human-agent-environment
feedback loops. Moreover, while we explicitly model the tasks, we typically expect the
agents to decipher and learn the necessary skills on its own.

2. Preliminaries

Under the umbrella of Learning from demonstrations (Section 2.4) fall all the methods
in which humans are enabled to "show" robots what they want from them, by providing
demonstrations, or providing interfaces to directly control them (Sections 2.4.1 and
2.4.2). While this enables robots to learn new behaviours more quickly, it requires
further "communication channels" [79] to allow robots to generalise these behaviours,
i.e. for humans to communicate to them what they are actually doing.

Natural Language is perhaps the most powerful and intuitive such communication
channel, as observed in a number of recent works [79] [56] [8] [51].

Foundation Models have enabled a fundamentally new interaction with robots. Prior
works [47] [103] have demonstrated that we can issue a natural language instruction
(i.e. description of a task), and get a behavioural response within seconds, which we
may then respond back to, etc... This not only creates extremely tight human-agent-
environment feedback loops, but can also take advantage of the inherent structure of
natural language to organise the behaviours that are being created.

2.2. Reinforcement learning

Reinforcement Learning (RL) [81] has emerged as one of the key methods for learning
individual robotic skills [32]. Central to reinforcement learning is the reward function
R:SxA— R:R(s,a). The agent then maximises the cumulative reward R; =
Y2 0 Y71, traditionally given some discount factor -y to model the uncertainty about
achieving future rewards.

This brings us to the usual MDP formulation: (S, A, P, R, 7). By effectively speci-
tying this reward function, the agent is supposed to learn robust behaviours directly
through trial-and-error interaction with the environment. This is appealing, because it
allows the engineer to specify a high-level goal and hope that the agent picks up the
necessary low-level skills in trying to achieve this goal.

We assume that a single reward function » maps to a single behaviour b, though it is
possible to formulate complicated composite reward functions that cover multiple (see
Figure 2.3). While the engineer may hope that constituent lower-level skills are learned,
these are not explicitly modelled in this setup.

2.2.1. Reward shaping

The reward function becomes the central bottleneck to informing the robot of the
behaviour we intend to elicit. This is a challenging problem, and coming up with
effective rewards is a research discipline in itself, typically referred to as reward shaping
or reward engineering. Effective reward design typically involves a tight feedback loop
through the engineer [18], in which the engineer designs a function, observes the

2. Preliminaries

New reward functions for v2 envs #3712

FSIMergedl haydenshively merged 68 commits into master from new-reward-functions (0Jon Mar 9, 2021

) Conversation 1 -0- Commits 68 [F) Checks o Files changed 180

haydenshively commented on Jan 29, 2021 - edited ~ Contributor

&

This massive PR is the culmination of many months of work by @avnishn, @adibellathur, and myself. It includes complete
reward function rewrites for all 50 v2 environments. We've removed all stateful indicators and conditionals, instead opting for
fuzzy logic in order to provide smooth, dense rewards.

All environments that involve grabbing an object and moving it (pick-place style) provide increasing rewards at each stage of
the process -- caging, gripping, lifting, and moving. Moreover, they're designed so that if the agent fails at some later step
(i.e. it drops the object after lifting it), rewards encourage it to start over with caging.

In addition, all rewards have the same scale, 0 to 10. If a policy gets a reward of 10, it is guaranteed to be in the success state
(though note that the converse isn't true). Interestingly, we've seen indications that this makes task inference harder.

Finally, new rewards were used for single-task runs of garage PPO and SAC. Of 3 seeds tested[1] for each env on each
algorithm, the vast majority of environments trained to 100% success at least twice (in under 20 million timesteps). This
stands in contrast to old rewards, with which PPO and SAC often couldn't train at all.

[1] Far more than 3 were tested throughout the development process. 3 were tested in the PR's final form

(©)

Figure 2.3.: A github pull request, demonstrating the inherent challenges of reward

shaping, in the popular Multi-task benchmark environment Metaworld.
https:/ / github.com /Farama-Foundation/Metaworld /pull /312

resulting behaviour, and then adapts the behaviour accordingly. While a well-designed
reward may improve sample efficiency and asymptotic performance of an RL algorithm,
it is difficult to predict when it produces unintended local optima (termed reward
hacking [76]).

The long training times inherent to RL make this kind of reward tuning a very slow
process, and the tightness of the reward bottleneck as a communication medium makes
it difficult to integrate human knowledge. Although to a human it is often plain to see
what is going wrong, it is hard to take advantage of this knowledge.

Consider the following example: to solve a multi-step task, the task engineers may
introduce rewards that are conditionally triggered when an agent achieves a subtask
[102] (see 2.3).

2.2.2. Extensions

There are many extensions to this basic RL setup, which are worth mentioning as
general principles to inspire the learning of diverse behaviours.

2. Preliminaries

Goal-conditioned RL

Multi-task or goal-conditioned RL (GCRL) introduces a goal variable g to explic-
itly model the learning of multiple behaviours with a single goal-conditioned policy
nt(als,g) [71], which map closely to our definition of behaviours. The hope is that the
agent can exploit the shared structure between tasks, and learn multiple tasks more
quickly than learning each from scratch, though the lower-level behaviours that should
make this possible are not modelled directly, as in plain RL.

Imitation Learning

Imitation learning (IL) aims to circumvent the reward bottleneck by allowing the agent
to learn directly from expert demonstrations T = (sg, a1, ...,ar,st) (see Section 2.4).
Behavior Cloning methods aim to directly learn a policy 7t that produces the expert
trajectory, but are brittle to deviations from this trajectory [106]. Inverse Reinforcement
Learning aims to first infer the reward function that produced the expert trajectories,
and then optimises this inferred reward function [106].

Hierarchical RL

Hierarchical Reinforcement Learning (HRL) [82] introduces the notion of temporal
abstraction, i.e. of explicitly modelling skills, as in Definition 1 and learning a high-level
controller to choose among the more temporally extended actions (termed options).
HRL has long been hypothesised as key to tackling some of RL’s most fundamen-
tal problems, centred around alleviating the curse of dimensionality [5], though its
successes have remained largely hypothetical [59].

Curriculum Learning

Curriculum learning [6] proposes to start learning with easy tasks, and to gradually
increase their difficulty, inspired by learning in humans. In the RL context, this typically
involves the definition of task curricula by humans [60]. However, this relies on human
understandings of task difficulty, which may not necessarily align well with difficulty
for the RL agent.

Natural-Language conditioned RL/IL

We may also use a natural language description I of the task to condition the policy
nt(als,1). Language is a natural medium for encoding abstractions, for generalisation,
and most importantly: for communication. Language may be key to moving past Tabula
Rasa RL, i.e. blank-slate learning [50]. See [112] for a more recent survey.

2. Preliminaries

RL from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) attempts to leverage non-expert
human inputs, recognising that they are usually capable of effectively evaluating and
providing feedback for learning agents. The reward function is dynamically defined
and refined with humans in the loop, ideally allowing it to model complex human
preferences [37].

2.2.3. Challenges

Aside from the reward bottleneck, RL faces some fundamental challenges arising
from its general formulation. Perhaps most importantly, it requires a large amount of
environment interaction, taking hours or days to train on expensive hardware.

Since RL is so data-hungry, it is usually trained in simulation environments, which
can never completely model real-world environments. This makes the deployment of
policies trained in simulation to real-world robots (Sim-to-real transfer) challenging,
and is a significant contributor to the limited success of DRL on real robots [32].

Moreover, the policy resulting from this training is difficult to interpret, or to extend.
Attempting to adapt a trained agent to a new task may cause it to no longer be able
to solve prior tasks, a long known problem with neural networks termed catastrophic
forgetting [19]. Solutions to this problem fall under the header of Continual Learning.
Because the learned policy is difficult to adapt, much RL training is Tabula Rasa, meaning
many complex functions must be relearned from scratch when training a new agent.

In our eyes, another significant weakness of DRL is that its general formulation belies
all the human engineering required to make it work for a specific task, which we may
refer to overall as environment shaping [64]. For example, parts of the state space S
may be strategically selected and modified to speed up learning, and the action space
A is typically altered to some higher-level representation than joint-level torques. For
example, in manipulation environments, the end-effector is typically directly controlled
in cartesian space. Due to the difficulty in introducing non-expert human feedback, the
training burden rests entirely on experienced engineers.

2.3. Task-and-Motion Planning

Task-and-Motion Planning (TAMP) approaches focus specifically on very long-horizon
scenarios in real-world, unstructured environments, like homes, hospitals or hotels [22].
As the name indicates, TAMP methods split this problem into two layers: high-level
task planning, and low-level motion primitives. The task plan sequences, coordinates

2. Preliminaries

and parameterises low-level primitives, which include both perception and control
modules.

While this is reminiscent of Hierarchical Reinforcement Learning, TAMP methods
express task plans in a symbolic language like PDDL [1] or Logic-Geometric Program-
ming [85]. TAMP methods then use classical planning algorithms, like Probabilistic
Roadmap Method (PRM) or Rapidly exploring Random Trees (RRT) to find optimal
paths. The upshot of this is that we can compute guarantees, and that symbolic lan-
guages are interpretable. The drawback is that this tends to be difficult in dynamic
environments, and that this inevitably also faces the curse of dimensionality as the
number of primitives and parameters increases.

Moreover, these approaches require a manually defined domain model. This repre-
sents an attempt at providing an intuitive interface for leveraging human knowledge.
For instance, the engineer may define the objects that are relevant to the agent, and the
possible interactions with these objects. This is challenging and time-consuming, even
for an engineer, and limits the possible instructions to those that can be expressed in
the chosen symbolic language [79].

TAMP methods fit into contexts with factorised perception and control, unlike the end-to-
end methods discussed in the previous section. Because of this, TAMP methods are well
integrated with Robot Operating System (ROS) [53], an open-source library designed
for the effective programming of robots that is popular in industrial applications.

2.4. Learning from demonstrations

Between hardcoded rule-based approaches and trial-and-error based learning, there is
a spectrum of robot "teaching" approaches, wherein humans instil knowledge in more
intuitive ways. These approaches may be referred to under the umbrella term of Learning
from Demonstrations (LfD), or Programming from Demonstrations. This is appealing,
because it allows application domain experts (non-expert in robot programming) to
"program" the robot, rather than this burden falling on the robotics engineer. End-users
often work in close contact with the deployed robots and are deeply familiar with the
environment in which the robots operate, and as such are well-equipped to identify
faults, corner cases and continually ensure reliable operation.

While the bulk of LfD methods fall into the category of Imitation Learning methods,
LfD may be viewed as a superset [68]. There is a wide variety of approaches within
LD, including kinesthetic teaching methods, which allow human operators to physically
move the robotic arm through the desired trajectories (sy, ..., st) — learning from passive
observation of humans performing a task (like picking up an object) - and teleoperation,
in which humans are provided some interface to control the robot.

10

2. Preliminaries

2.4.1. Teleoperation

Teleoperation methods require some form of Ul for a user to input trajectories, such
as a joystick, haptic devices, VR interfaces, or even human-controlled grasp devices
with cameras mounted to them [77] [3]. Importantly, this allows users to operate a
real or simulated robot remotely, with the latter opening the door to crowdsourced
collection of demonstrations [54]. The main drawback to these kinds of approaches,
is that their success depends heavily on the provided Ul, and that the development
of this Ul incurs costs and is not always straightforward. However, teleoperation has
been successfully applied also to more complex systems, including robotic hands,
humanoids, or underwater robots [68].

2.4.2. End-user Programming

End-user programming interfaces allow non-expert humans to "program" robots, by
providing a simple UI for doing so, in the same way that modern computer software
allows non-technical users to work with computers. While LfD methods typically try
to eliminate programming completely, End-user programming aims to make it "simple
enough"”, though the wide variety in end-user expertise in general programming and
robotics makes this a challenging problem. Approaches range from simplified APIs
(e.g. KUKA Robot Language or Universal Robots URScript) to fully-fledged GUISs [2].

2.5. Foundation Models

Foundation Models are large machine learning models, trained in an unsupervised
manner on very large datasets, that can then be adapted for downstream, specific
tasks [9], often significantly outperforming their specialist predecessors. Although the
earliest and most well-known examples of Foundation Models are Large Language
Models (LLM) like the first GPT [67] or BERT [16], both based on the Transformer
architecture [86], Foundation Models have since been trained for a variety of domains
and modalities, and with a variety of techniques. Other notable examples include
the Vision-Language model (VLM) CLIP [66], which generates textual descriptions of
images, RT-2 [10] for natural language conditioned robotic control, Gato [69], purporting
to be a general-purpose agent foundation model, and GPT-4o [31], a multi-modal model
mapping text, image, sound or video to text, image or sound. The global research
community is still struggling to get a grasp of the capabilities and limitations of these
models.

In this thesis, we are primarily interested in LLMs, especially as applied to the prob-
lem of code generation. We describe the interface with which we may can tune them to a

11

2. Preliminaries

specific task and provide an overview of the emerging literature on Foundation Model
Agents. For completeness, we briefly discuss the robotics-native Vision-Language-
Action (VLA) Foundation models.

2.5.1. Interface

Foundation Models are named as such because they are viewed to be incomplete,
completed by adaptation to a specific task [9]. This adaptation can be done in a number
of ways, discussed in the following.

In-context learning

In-context learning describes all approaches that involve formulating "better" inputs to
the FM, sometimes also dubbed prompt engineering. In other words, it refers to all
approaches that improve the outputs of a model without altering the model itself.

For instance, we can provide the model with examples of the kind of responses we
might expect, a technique referred to as Few-shot learning [11]. This may be viewed
more broadly as providing the FM with a clearer specification of what we "want" from
it.

Chain-of-thought [96] prompting involves prompting the FM to produce a specific
sequence of output tokens that is supposed to make successful responses more likely,
often reframed as prompting the FM to "reason”, or to "think". For instance, when
solving math questions, it makes sense to output intermediate calculation steps, each
of which must be correlated with one another in some way, rather than attempting to
output the answer without these intermediate steps.

A number of techniques somehow chain and/or aggregate multiple calls to the FM,
to both take advantage of and also compensate for the probabilistic nature of FM
outputs. For instance, if we expect the LLM to answer an arithmetic question, we may
prompt it to do so multiple times, and select the most frequent answer [93]. Taking
this idea further, we can impose "reasoning" on the LLM by getting it to progressively
generate trees [100] or graphs [7] of "thoughts", embedding LLM calls into a search
structure managed by the model itself, and taking a step towards Language Agents (see
Section 2.5.2).

Retrieval-augmented Generation

Retrieval-augmented generation (RAG) is a technique to provide LLMs with query-
related information from a knowledge base [45], typically to combat hallucinations, i.e.
the generation of plausible but non-factual content.

12

2. Preliminaries

In its simplest form, the database contains documents d;, indexed by a vector em-
bedding E(d;), generated by a text-encoding model E like OpenAl’s text-embedding-3
or SBERT [70]. Given some query, we can then retrieve documents that are semanti-
cally similar to this query, where semantic similarity is typically measured by cosine
similarity sim(dy,d2) = E(dq)E(da).

In the context of question-answering (QA), the query might be the question, for
which the answer might be contained in one of the documents. Typically multiple
documents are retrieved, and the LLM is left to choose what information it uses in its
response.

In this way, RAG offers an approach to extend the capabilities of an LLM without
altering its weights. It allows developers to effectively separate factual knowledge
from the knowledge contained in the training parameters of an LLM. With an effective
retrieval pipeline, the role of the LLM is reduced to translator, or interpreter. Impor-
tantly, applied to code generation, this could enable an LLM to effectively incorporate
unfamiliar APIs.

However, this example also highlights a weakness of RAG, as we are measuring the
similarity between prompt and response - a more effective pipeline would embed each
document with a hypothetical prompt it is the response to [20]. Ineffective retrieval,
and thus attaching irrelevant information to the prompt, both makes inference more
costly, and may increase the likelihood of false answers [72].

Tool use

Another common paradigm within LLM applications is tool use, referring broadly to
the use of external functions. RAG may be viewed as a database access tool. Other
examples of tools include a code interpreter, which the model may invoke to check code
it generates for runtime errors, or a function to move a robotic end effector. Tools may
represent workflow components the model is technically capable of, but that we wish
to be reliable and tested, or it may represent components the LLM is simply incapable
of. Tools can further enhance the robustness, interpretability, and domain expertise of
models [65]. Extending this notion, the agent may also call other agents, with different
roles or capabilities [107], discussed further in Section 2.5.2.

Finetuning

We can finetune a Foundation Model by post-training it on a smaller, domain-specific
dataset. Similar to few-shot prompting, it steers the model towards the part of the prob-
lem space we are interested in, rather than serving as a viable method for knowledge
injection [62]. For instance, if we wish to use the model for text classification, we may

13

2. Preliminaries

Foundation Model Cognitive Foundation Model Agent

_ B

' Reasoning

-l - @) - E Retrileval ? O
) ¢ Learning

Foundation Model Agent m : _' E]
“— : é @

Figure 2.4.: Cognitive Foundation Model Agents, adapted from [80].

finetune it on labelled data, indicating both the specific task, and how we would like
the task to be solved.

2.5.2. Foundation Model Agents

An intuitive next step is to provide FMs with tools to perceive and act in an environment,
creating Agents. We may describe the sum all tools and structures built around
Foundation Models as their cognitive architecture (following [80]), visualised in Figure
24.

Planning

Planning may be understood synonymously with reasoning, and involves any FM
interaction that happens between perceiving and acting. When combined with a set
of control primitives, this may be viewed analogously to task-planning in TAMP. In
the context of language agents, this has been extended to employ common search
algorithms like Monte-Carlo Tree Search (MCTS) [24]. When integrated with closed-
loop feedback from the environment, numerous works have demonstrated the benefits
of leveraging LLMs as planners [30]. On the other hand, FMs do not contain perfect
world models. As with any model-based approach, if planning is not sufficiently
interlaced with grounding feedback, it tends to diverge from reality [35].

14

2. Preliminaries

Feedback and Grounding

Foundation Models are capable of interpreting complex state descriptions from the
environment. For instance, in VOYAGER [89], a minecraft agent is expected to interpret
a full textual description of the environment, including its inventory at every timestep.
In Reflexion [73], the authors show that language agents can respond to scalar reward
signals, dubbing this capability a form of "verbal reinforcement learning". VLMs are
capable of interpreting and acting on visual inputs [27].

Importantly, the language-first nature of these models provides an intuitive and
powerful communication mechanism for humans to interact with these agents and
provide feedback [29]. While this capability is made note of in most works, few make
this the central thesis of their method.

Memory and Learning

As described previously, we may imbue agents with an external memory. Importantly,
this also introduces a mechanism for learning, by writing to this memory for future
retrieval. For example, the agent may store validated code-pieces for later use [89],
user corrections [109], or insights gleaned from experience interacting with a specific
environment [111], discussed further in Section 3.3.1.

Multi-agent collaboration

The notion of introducing multiple agents is often somewhat of a misnomer, as they
typically collaborate towards achieving a single goal, and may as such be viewed as
parts of a single agent. However, it encapsulates the idea that we can introduce distinct
in-context learning and RAG setups within a single problem-solving setup, and this
may improve overall performance. This is a common design pattern in recent works,
for instance introducing modules to self-reflect [73], generate multiple plans and select
the best one [95], or generate task curricula [89].

2.5.3. Vision-Language Action models

Vision-Language-Action (VLA) models are robotics-native Foundation Models, rep-
resenting attempts to translate the success of Foundation Models to this domain.
Examples include RT-2 [10], Octo [84], and OpenVLA [39]. VLA are end-to-end models,
which directly translate robot visual observations along with natural language task
inputs to low-level robotic actions. The hope is that we may then experience similar
"emergent" capabilities and generalisation in robotics, that we saw in text generation,
and that the internal "common sense" of existing Foundation Models translate to

15

2. Preliminaries

robotic manipulation. Moreover, as with LLMs, finetuning on domain-specific data (i.e.
demonstrations) would then ideally allow an intuitive interface for adaptation.

These approaches are fundamentally limited by the lack of existing large-scale
robotics datasets, with the largest being the Open-X Embodiment dataset [61], at
roughly 1 million robot manipulation trajectories across multiple emobodiments. Due
to their large size, they also demand for novel solutions to improve inference speeds.

16

3. Background

In this chapter, we provide a more focused overview of how LLM and VLM models
have been applied in the context of robotics. We focus specifically on the effective use
of skills, and on their acquisition.

First, we extend the definitions in Chapter 2. We are interested specifically in works
that directly use an LLM f to map a natural language instruction / to a robot control
code ¢, ie. f(I) =c, and term f a Language Model Program [47]. Multiple representations
of ¢ have been explored in the literature, most notably python code, PDDL, or reward
function code to train a parametric policy via RL, or for use with fast control-based
methods. We use c to represent the policy to highlight that, in this thesis, we are
interested in methods that translate natural language to python control code. As in
Chapter 2, there is a direct mapping from the policy c to a behaviour b = (s, ..., sT), and
as such we may by extension view f as a mapping from natural language instruction /
to behaviour b (Figure 3.1).

l LMP b
‘ '
LG @l
i w_

Figure 3.1.: Language Model Programs allow us to generate robot behaviours b from
natural language instructions [, by rolling out the generated policy code c
in the environment.

Such works typically rely on In-Context Learning (section 2.5.1) to adapt general-
purpose models for their specific task, via two primary mechanisms: providing few-
shot examples £ = {(l1,¢1), ..., (Im,cm) } that demonstrate the desired mapping from
instruction to policy code, and a set of skills Z = {zj, ..., zy } that the agent may call to
produce c, which correspond with tools in the broader literature on foundation model
agents. This is visualised in Figure 3.2.

Both the number of few-shot examples |€| = M and the number of skills | Z| = N are

17

3. Background

Examples Skills

[(11,4 & c2)]. .o [(lM, cM)] EZ] te

v v
= —»@H(b

Figure 3.2.: A Language Model Program is a Foundation Model tuned for a specific
task via In-Context Learning (see section 2.5.1), in this case by providing a
fixed set of skills (tools) (z;), and few-shot examples ((I;, ¢;)) demonstrating
their use.

typically fixed at the outset. The hope is that the examples are sufficiently representative
of the overall set of language instructions £ and desired behaviours B, such that the
agent can generalise to unseen instruction-behaviour pairs (I’,¢’). This presumes that
the instructions !” accurately reflect the humans intention, and that the LLM is capable
of correctly interpolate I’ from the given examples £, and thus to produce the desired
behavioural response ¢/, i.e. V'. As we will discuss in Chapter 4, these are strong
limitations.

In practice, this means the abilities of the agent are defined at the outset. There is no
mechanism for learning (see Section 2.5.2), so the space of behaviours B that the agent
can execute is fixed, and dependent on the effective choice of examples £ and skills Z,
because the prompt is fixed across generations. Moreover, the mapping from natural
language prompt ! to behaviour b is encoded in f, with no way to refine this mapping
other than rewriting the prompts.

In the following, we begin by discussing Code-as-Policies, as a representative work in
generating robot code from natural language instructions, and use this as a springboard
to discuss some of the fundamental benefits and limitations of this general approach,
outlined in the paper. We then provide some examples of how Language Model
Programs have otherwise been used in robotics. Finally, we discuss insights from the
broader space of Language Model Agents (see Section 2.5.2), intended to enable the
agent to learn from experience, either by independent interaction with the environment,
or from human feedback. This is enabled by building a cognitive architecture, to allow
for dynamic prompt composition based on the current instruction /.

18

3. Background

objs = [’red block’, ’blue bowl’, ’blue block’, ’red bowl’]

the left most block.

block_names = [’red block’, ’blue block’]

block_positions = np.array([get_pos(name) for name in block_names])
left_block_name = block_names[np.argmin(block_positions[:, 01)]
ret_val = left_block_name

Figure 3.3.: An example output from the parse_obj Language Model Program.

Root LMP

I| (12 ‘2 (IM CM Zl Zz T n l
—"

—»@H(b
T~

parse_obj parse_shape_pts fgen

Coet) (et) (e

Figure 3.4.: Code-as-Policies demonstrates that we can compose Language Model Pro-
grams hierarchically, with each LMP fulfilling a distinct function.

3.1. Code-as-Policies

Code-as-Policies (CaP) [47] first convincingly demonstrated the usefulness of using
an LLM generating python code as the orchestrator for a robotic agent, coordinating
different perception and control APIs to generate behaviours from natural language.

As in the previous discussion, each LMP maps a natural language instruction to
python code, and is few-shot prompted to fulfil a specific role in the behaviour-
generating pipeline. For instance, the parse_obj LMP maps an open-vocabulary
natural language description of an object to a specific objects representation in the
python environment (see Figure3.3).

The authors also define other LMPs, for example for converting a natural language
description of a shape to a corresponding set of waypoints, or for generating functions
in the policy code c that are undefined in the code environments. Importantly, the
authors show that in this way LMPs can be composed hierarchically (see Figure 3.4).

These LMPs can be defined in a use-case specific way. Each LMP is defined by its

19

3. Background

own set of few-shot examples £y MP and skills Z; MP, thus tailoring each to specific
function in the robot pipeline. A number of other works follow the same basic structure
(discussed in Section 3.2), providing a simple way to modularize and integrate many
different programs.

3.1.1. Benefits

Representing policies as python code has a number of advantages, discussed briefly
here. Moreover, it allows us to leverage results from the much broader space of
Language agents that use code as their language of expression.

Simple Integration of Perception and Control modules

In CaP, the authors use open-vocabulary object detection models out of the box. Many
later works in this space follow-suit (see Section 3.2). Each of these functions can be
treated as an LMP, and thus easily be integrated with the CaP framework. This large
diversity of complementary approaches enables a new modular approach to imbuing
robots with the necessary skills to adapt to a given environments affordances.

Moreover, there is a large number of third-party python libraries that augment an
agents capabilities in a straightforward way, that it is likely capable of using somewhat
effectively due to their presence in the data used for pretraining the initial model. The
authors of CaP incorporate numpy and shapely packages for geometric reasoning,
though we can imagine this opens the door to a large number of existing libraries, for
example related to Computer Vision or Motion Planning.

Interpretability

Code is the standard mode of communication between humans and computers, and
particularly python is already a very popular choice for research. We can read code,
and we can edit it. Moreover, code comes with a vast ecosystem for debugging and
error-handling, and agents may use stack traces to fix bugs autonomously [13].

Code enhances reasoning capabilities of LLMs

A key result in CaP is that planning with code is more effective than generating Natural
Language task plans. One reason is that we can naturally reason about spatial-geometric
relationships using code. But a more important reason is that code is broadly a more
effective language for expressing plans [92], and for tool use [99].

20

3. Background

It addresses some of the core weaknesses of end-to-end approaches

Many of the core challenges of parametric approaches can be addressed by representing
policies as code, including but not limited to:

Sim-to-real transfer — This problem is localised to the particular control and perception
primitives, and can be tackled on a case-by-case basis.

Catastrophic Forgetting — New skills can be added without inadvertently overwriting
old ones.

Cross-embodiment — By implementing the low-level API used by CaP on different
robot embodiments, the method can be made somewhat neutral to the choice of
embodiment.

Training Time - CaP systems can be deployed without any further model training.

3.1.2. Limitations

This common setup, presented in CaP and replicated in numerous later papers, in
which a root LMP can call on a fixed set of primitives/LMPs, has some limitations.

In this setup, the prompts for each LMP are hand-engineered with few-shot examples.
Since the LLM is dealing with an unfamiliar AP]I, it needs these few-shot examples
to understand the functions, their parameters, and their usage. As the authors note,
this produces a setup in which "only a handful of named primitive parameters can be
adjusted without oversaturating the prompt".

This problem can be illustrated easily in CaP. We have a small number of low-level
LMP’s (e.g. parse_obj) , each with a specific task, and the associated few-shot examples.
The main LMP calls these LMP’s, as well as a number of other primitives, so the few-
shot examples for the main LMP need to give examples of different parameterisations
for each of these, as well as demonstrate their different usage contexts. As the number
of functions that the main LMP can call grows, so do the number of examples needed
to allow it to function properly. In a similar vein, the authors note that CaP doesn’t
handle commands well that operate at a different level of abstraction than the provided
examples. For example, the authors state that CaP couldn’t "build a house" in the
table-top domain, because they included no examples of complex structures.

3.2. Language Model Programs for Robotics

Language Model programs have since been used to fulfil a wide variety of roles in
the context of robotics. There are a large number of surveys describing the broader

21

3. Background

integration of Foundation Models for robotics [40] [90] [87] [112] [26]. We provide some
examples to give an overview here.

A popular pipeline in recent works has been to first use Segment-Anything [41], a
Foundation Model that allows prompt-based image segmentation, followed by the VLM
CLIP [66] to label these segmentation masks, though there are a variety of Foundation
Models to choose from to fill either role.

If we have access to point-cloud data, we may also use an object-agnostic grasp pose
generator [104] coupled with a VLM to select the best grasp pose [17]. Another recent
paper shows how we might use an LLMs capability to infer properties of an object to
be grasped, like its mass, surface friction and deformability to further inform grasps
[98]. When learning from human grasps, we could employ common hand-detection
models [58] [88].

VoxPoser [28] uses a VLM to generate affordance maps (i.e. a heatmap that shows
where in the environment it is "good" to move the end-effector, and where it is "bad"),
and then uses a motion planner to guide a robotic arm to trace out collision-free
trajectories towards goals specified purely in natural language.

A number of works also explore using VLMs as cheap behaviour critics, whether by
evaluating the final frame [110], multiple frames from different viewpoints [17] or an
entire trajectory [21], while also being capable of providing feedback as to what might
have gone wrong.

Another common application of Foundation Models in Robotics is in autonomous
planning, i.e. in generating task decompositions for long-horizon plans, which was
previously the domain of Task-and-Motion planning. Some works use the LLM directly
as a translator to PDDL [49], allowing it to take advantage of the existing infrastructure
around it. More commonly, plans and task decompositions are expressed directly as
hierarchies of Natural Language, or as code, as in CaP. ProgPrompt [75] attempts to
provide a structured approach for prompting LLMs in this context.

3.2.1. Foundation Models for Reinforcement Learning

A subset of methods has also focused on leveraging Foundation Models directly to
improve the sample-efficiency and performance of Reinforcement Learning. For a
review, see [12].

LLMs may be employed in a number of places, but the most obvious one is to
translate Natural Language to reward code [103]. Other works have used policies
generated by CaP as exploration guides while optimising a parameterised policy [101].
Similarly, ScalingUp [23] uses an elaborate CaP setup to autonomously solve tasks,
along with a verifier to classify trajectories according to their success. These successful
trajectories are then used to train a Diffusion Policy [14].

22

3. Background

RL-VLM-{[94] uses a VLM to give preferences over pairs of an agents image observa-
tions to learn a reward function. In EUREKA [52], the authors propose to leverage fast
simulators to perform autonomous reward evolution, directly employing the LLM as an
RL engineer, proposing a reward function, training the agent, and then revising the
reward function based on the results, finding that the agent can outperform human
expert reward engineers.

GenSim [91] shows that we can improve the generalisation of RL agents by generating
task setup variations using coding LLMs, again alleviating the burden on the RL
engineer.

The advantage of these approaches is that we retain the flexibility of end-to-end
approaches, while extracting relevant knowledge into fast policies that no longer require
Foundation Models in the loop.

Following a slightly different route, a small number of recent works directly address
the fixed skill library discussed at the beginning of the chapter. The authors of League++
[46] propose to extend the skill library by using the LLM as reward engineer for DRL-
based skill learning, along with another LLM to translate natural language prompts
into TAMP plans. Two other recent works [63][55] propose to learn new skills via
Imitation Learning, which they demonstrate both on a real robot and in a simulated
teloperation environment. The operator provides 5-10 demonstrations of the task, from
which the agent may learn via Neural Descriptor Fields [74]. These skills are then made
available to the CaP-planner.

3.3. System 2 Learning

We now turn our attention to a specific subclass of these approaches that leverage
non-parametric adaptation, which we refer to as System 2 Learning, following the
popular idea from cognitive psychology [34]. In this analogy, System 1 refers to the
fast, black-box processing enabled by neural networks, while System 2 refers to the
slower processing enabled by symbolic languages. As discussed in Section 2.5.2, System
2 learning in Foundation Model agents is enabled by writing useful knowledge to
long-term memory, which can then later be retrieved in a task-related manner. As such,
it may be viewed as a method for dynamically managing the context window of the
Foundation Model.

While this idea has been explored in the broader domain of autonomous Language
Agents, it has received less attention within the Robotics domain. We distinguish
between two crucial subproblems: learning from experience, and learning from human
interaction.

23

3. Background

3.3.1. Learning from Experience

In order for an agent to autonomously learn from experience, it must be able to interpret
the experience in a way that it can leverage for downstream tasks.

VOYAGER [89] demonstrates this in the popular videogame Minecraft. Initialised
with a small set of control and perception primitives, it interacts with the environment
autonomously, and learns new skills in the process, slowly increasing the level of
temporal abstraction at which it can act. This process relies on a curriculum-generating
LMP to propose tasks of appropriate difficulty, and on a self-verification LMP that
determines whether a behaviour was successful. If successful, the behaviour is stored
to the skill library, and may be retrieved and used for downstream tasks.

The authors find that this growing skill library, and the accompanying introduction of
temporal abstraction are key to the continual learning capability of their agent. Without
the skill library, learning plateaus eventually, when the programs the agent would need
to synthesise to solve a task become too long.

In a similar way, in ExpeL [111], the authors introduce an LMP for extracting natural
language insights (e.g. "you can’t do this when...", or "when this happens, do this...")
from environment interaction in different domains. These insights are then similarly
retrieved in a task-specific manner. The success of this method is demonstrated (among
others) in the long-horizon embodied reasoning benchmark Alfworld.

3.3.2. Learning from Human Interaction

Distilling and Retrieving Generalisable Knowledge from Online Corrections (DROC) [109]
shows how the ideas in the previous section might translate to robotics. Particularly,
they use the same principles to more effectively leverage human interaction. Rather
than generating insights from autonomous interaction with the environment, these
insights are generated from user feedback, and appended to prompts in a task-related
manner.

TidyBot [97] similarly tackles the problem of personalising robots, testing this ability
on the problem of picking up objects and restoring them to the locations preferred
by the user. Users provide preferences, and the LLM is used to summarise these
preferences, and convert them into situated robot control code.

PromptBook [4] provides another principled approach for adapting to feedback, by
allowing the LLM to rewrite prompts based on user feedback. Similar to DROC, the
authors provide an LMP with a history of (task, code, feedback) tuples, but then ask it
how it would revise a specific LMP prompt to integrate this feedback for downstream
tasks.

ShowTell [58] proposes a novel method for Programming by Demonstrations, using a

24

3. Background

VLM and LLM to interpret a human demonstration with accompanying language narra-
tion, and generating modular robot code that imitates the demonstration, demonstrating
that low-level behaviours (i.e. skills) can be synthesised using a similar approach to
CaP.

In a somewhat different vein, another recent work [43] directly attempts to incorporate
a large number of skills, in the form of well-tested control blocks, via Retrieval-
Augmented Generation. We mention it here because it demonstrates that we can
take advantage of a large skill library, should it already exist, though no learning takes
place in this work.

25

4. Motivation

Foundation Models have enabled new methods for interacting with robots, and imbuing
them with more capabilities. In particular, it has become more straightforward to
develop robots in a modular, environment-dependent fashion, by providing them with
an appropriate base set of skills, and then using an LLM to effectively orchestrate
these skill calls. However, as of yet, few works integrate mechanisms for learning from
human feedback into their agents. We view this as an important direction for research,
since robotics is a domain in which humans are exceptionally capable of providing
corrective feedback to improve the agents performance, and since natural language
provides a very intuitive interface for communicating these corrections. Moreover, we
want to take advantage of how quickly these algorithms produce behaviours from
natural language instructions, to enable an interactive behaviour creation experience.

4.1. Problem statement

The focus of this thesis can be illustrated by a simple example. A simple version
of Code-as-Policies in the block manipulation domain is capable of stacking blocks.
However, since this behaviour is entirely generated by the LLM, there is some noise
to it, and without further prompt manipulation, this doesn’t always align with our
expectations (Figure 4.1a). Moreover, the agent isn’t always successful in stacking the
blocks, since sometimes it tries to place a block where it collides with another block
(Figure 4.1b).

These problems are straightforward for humans to identify, and to communicate to
the agent with an LLM as translator. However, to the best of our knowledge, there are
only few works actively trying to leverage this information source in this context.

Moreover, as discussed in Section 3.1.2, the capabilities of the agent are limited from
the outset by the set of few-shot examples and tools provided to it, and there is no clear
mechanism for extending these capabilities, or for online adaptation. As long as we
operate with fixed prompts, the number of primitives the agent can handle is limited.

Another fundamental limitation of these approaches is the inherent ambiguity of nat-
ural language. While a human issuing a command has an imagination of the behaviour
they wish to elicit, it is likely underspecified or imprecise. As these behaviours become

26

4. Motivation

(a) The blocks are not stacked corner-to- (b) Stacking fails because another block is
corner. We can augment the prompt, in the way.
but how do we ensure it just stacks the
blocks the intended way, every time?

Figure 4.1.: Responses to the prompt "stack the blocks", demonstrating both the inherent
ambiguity in language, and failure modes that are easy for humans to
correct.

27

4. Motivation

more complex, this problem becomes more pronounced. Even in the simple example in
Figure 4.1a, the agent produced a valid response - it was just not the desired one.

4.2. Skill learning via natural language interaction

Code-writing LLMs can generate and revise behaviours according to user inputs on the
order of seconds, creating tight human-agent-environment feedback loops (see Section
2.1). The user can prescribe a behaviour, and see the result within seconds, enabling an
entirely new interactive behaviour creation experience. However, there needs to be an
explicit mechanism for taking advantage of this interaction, absent in prior work.

Ultimately, the goal of this interaction is to learn a shared language with the robot: a
library of mappings from a natural language instruction / to an expected behavioural
response b € B. We posit that the only reliable way to learn this shared language is by
letting users define the meaning of their prompts, i.e., not hoping that the LLM can infer
it correctly based on its "common sense". In other words, we want to enable humans to
teach the agent what we mean, visualised in Figure 4.2.

Issue new prompt or corrective feedback

i c
' '
%—»@*(/)
@ /7 A
w_
W

Interpret behaviour and evaluate alignment

Figure 4.2.: LMPs allow humans to issue instructions via natural language, evaluate
behaviour and provide corrections on very short time-scales.

While this is already possible in the basic CaP framework, there is no framework for
learning from these corrections. For example, if the instruction [is to "stack blocks",
and the user has to correct the agent once before the desired behaviour b is evoked, the

28

4. Motivation

agent will do it wrong again the next time (or not, by chance). We would like the agent
to remember.

This can be accomplished in a conceptually simple way. We note that few-shot
examples are our way to steer the LLM: they provide examples both of the (I,b)
mapping, and which skills z € Z are relevant for a specific task /. We may then store
the successful pairs (/,c), and retrieve these when the user issues a similar prompt I’
(see Section 2.5.1).

However, this alone doesn’t provide a mechanism for ensuring that a learned be-
haviour mapping (I,b) is executed the same way the next time the same language
instruction is uttered: the agent may simply ignore parts of the examples that are
important to us, and LLMs can be very sensitive to the exact composition of the input
prompt — there may be unwanted behavioural variance. Moreover, as behaviours become
more temporally extended, and the resulting code strings become longer, the agent
becomes less capable of generating them [89]. In the same vein, it becomes more
difficult to respond to corrective feedback when applied to longer code strings.

We propose to circumvent this by learning skills, i.e. reliable and reusable behaviours
that were validated by human feedback. In the context of code-writing agents, this
means simply that we want to learn python functions, modelling the assumption that
the code hidden behind the function header has been sufficiently verified by human
interaction, and that we don’t want it to change in the current problem-solving context.
We identify many advantages of this approach, discussed in Chapter 6.

Skills effectively model the assumption that different parts of the problem-space
require different knowledge. For example, to move a 6-DOF end-effector from one
position to another, we might want to employ motion planning control primitives,
whereas to grasp an object we might use a specific grasp module. Code-as-Policies
addresses this problem by composing Language Model Programs hierarchically. We
view our solution as complementary, in that we view skills as the most intuitive
mechanism for reliably injecting user knowledge into the system. We view it as a step
towards embodiment-agnostic, intuitive end-user programming and human-verified
behaviour data collection via teleoperation, particularly when coupled with high-fidelity
simulators.

While there are some works exploring online skill learning in this context, to the best
of our knowledge there are none that focus on doing so purely from natural language
interaction, nor that focus specifically on learning a shared language between agent
and user.

29

5. Method

Our aim is to create an interactive behaviour creation experience: the user proposes a
skill in natural language, along with some tasks that verify that this skill is successful,
the agent produces a behaviour, and the user provides corrective feedback until this
behaviour is aligned with the users expectations. Once this is the case, the behaviour
is memorised and stored for later use. This allows us to build a growing library of
verified behaviours, which can reliably be invoked by natural language instructions.

-
Initialise Skill Library — .

B T Add learned skill to library

Propose skill to learn Correct behaviour until it is aligned

def stack_blocks(blocks, pose):

!

7

Issue tasks that test this skill

“Stack all the blocks”
Stack the red blocks in the middle _,_.1

“Stack the blocks from big to small”

Figure 5.1.: An interactive behaviour creation experience. The user is in control of every
step of the process.

As described in Section 3, we build on a function f(!) = ¢ that maps natural language
inputs / to python robot policy code, and thus a behaviour b, and that does so on the
order of seconds, rather than hours or days. As discussed in the previous chapter,

30

5. Method

we aim to learn skills, represented as python functions, and to do so explicitly, with
human guidance. We then want to enable the agent to effectively use these skills for
downstream tasks, to respond to user instructions and corrections in a predictable
manner.

In this thesis, we choose a very deliberate, user-centric approach to learning skills,
in which the user specifies both a general description of what the skill is supposed
to do, and then proposes a small number of semantically different tasks that test this
skill. Figure 5.2 gives an example of this. Only if the skill can be used successfully to
solve all tasks proposed to test it, is it accepted and committed to memory, and is made
available for downstream tasks.

Similar to previous works, the agent is initiated with a fixed set of skills z € Z, along
with examples e = (I,¢) € & that demonstrate their use, that enable basic environment
interaction. The user then interacts with the agent on a trial-and error basis, proposing
different behaviours, providing feedback to refine them, and then either discarding
them or committing them to memory. In this way, the agent progressively becomes
more and more capable, building a growing repertoire of verified behaviours in a
manner that is tightly integrated with human intentions.

Ultimately, as described in Chapter 2, we expect our agent to be capable of a specific
set of behaviours b € BB, and we want to be able to elicit each of these with a known set
of natural language instructions I € L.

We outline this method by further elaborating the specific role of tasks and skills,
then we discuss the basic components that are required to make this work, and the toy
environment in which we test our approach.

5.1. Tasks and Skills

While a task represents a specific instantiation of a desired behaviour, skills are one layer
of abstraction removed, and represent a reusable behaviour, with defined parameters
of generalisation.

In the following, a task (I,sg) is given by a natural language description / and an
initial environment setup s¢. This is the primary interface with which the user interacts
with the agent. When a task is solved successfully (with user feedback), we append the
solution code c and achieved final state st to this tuple (I, so, c,sT).

Skills z represent the reusable behaviours that enable task solutions. In order to learn
a skill z, we specify tasks {(;, (s0)i)}i = {1, ...,&;} that the agent should be able to
solve successfully with this skill, including variations in both instruction / and initial
environment configuration sg. This relationship is visualised in figure 5.2.

31

5. Method

“Stack all the blocks” g (1: (s0)1) \
“Stack the blocks in the middle of g Ly, (50)2) _— | . Gor stack blocks (blocke, pose):

the workspace”
1 509 7
[(14, (30)4)]

“Stack only the red blocks”
“Stack the blocks from big to small” m
Figure 5.2.: Tasks and skills. While learning, each task the user proposes minimally
tests a specific skill.

-

The solved tasks {(I,s0,c,s7)} specified while learning a skill play an important
role: they serve as the few-shot examples (/,c) for downstream tasks, demonstrating
the successful use of the skill, and the different natural language instructions that
elicit the particular variations in how this skill is used. As such, these tasks should be
selected deliberately, minimising redundancy. For example, if we are learning the skill
of picking up a book, it should not be necessary to first move around other obstacles.
Instead, each task might correspond to a meaningfully different position in which we
would find a book, for instance lying flat on the table, or standing in a book-shelf. The
concrete tasks that are chosen should depend entirely on the environment in which the
robot operates, and what is expected of it in this environment.

After learning a skill successfully, this leaves us with a set of (,c) pairs, i.e. pairs
of language instructions ! and code-strings ¢, where c calls the skill z (as well as other
previously learned skills) to solve the task /. When learned successfully, the skill z can
be added to the skill library Z, and the corresponding examples (I, ¢) can be added to
the example library £, which represents the set of all instructions we have taught the
agent. We use &, C & to represent the (I, c) pairs used while learning the skill z.

While the resulting pairs of (/,c) show the agent how to use the skill, the skill itself
represents the single-source-of-truth that encodes the concrete reusable behaviour the
agent is trying to learn, and encapsulates the parts of the behaviour that the user
does not want the agent to vary in downstream tasks. In other words, a skill is a
python function, and the task-specific code calls this function and sets its arguments
appropriately. This distinction is visualised in Figure 5.3.

32

5. Method

def stack_blocks(blocks, pose):
"mnStacks the blocks at the given pose, ensuring all blocks are rotated the same way.
Blocks are placed in the order in which they are given, from first to last."""
for block in blocks:
cur_block_pose = get_object_pose(block)
put_first_on_second(cur_block_pose, pose)

Task: stack only the red blocks

blocks = get_objects()

red_blocks = [block for block in blocks if get_object_color(block) == "red"]
middle_of_workspace = Workspace.middle

stack_blocks(blocks, middle_of_workspace)

Figure 5.3.: An example of the task-skill separation. On the left is the task-specific code,
demonstrating how to correctly use the learned skill (on the right).

5.2. Skill Learning

The core mechanism we want to introduce in this thesis is that of learning skills. As
described, this requires two things: the current skill z* that is being learned, and a
concrete task (/,s9). The skill is given by a python function, which may or may not
already be implemented, which we refer to as c;. To learn the skill, we prompt the
code-writing agent f to jointly output both the task-specific code ¢ and the skill-code
cz, though in principle these could also be generated separately. This makes the code-
writing problem slightly more difficult, by imposing a bottleneck through the function
header, but it enables us to encapsulate the code we do not want the agent to change in
downstream tasks.

Figure 5.4 and Algorithm 1 provide an overview of skill learning in our method.

The main challenge is that the skill code c, may be modified while solving each
task, while we expect it to still solve prior tasks (,so,c,st) € £,. We handle this by
providing a simple mechanism to allow the user to verify whether the updated skill
code still successfully solves prior tasks: we run the task-specific code for each prior
task (I,¢) € &, with the updated function code c,. If it doesn’t, the user continues to
provide feedback, or alternatively gives up, revises the skill, chooses a new skill, etc...
This step could be augmented with a VLM-based verifier (e.g. [21] [110]), that serves as
a first check.

In practice, this requires some ingenuity on the part of the end-user, by defining
sensible task curricula, and not overloading a single skill. The more we expect a skill to
generalise, i.e. the more tasks we expect it to solve, and the more distinct these tasks
are, the more difficult this becomes.

Due to the quick response times, we view this as a manageable weakness, in line
with our aim of shifting trial-and-error from the agent to the user, who can draw on a
wealth of world knowledge to effectively interpret and guide the robot behaviours.

33

5. Method

Skill Parser Task Setup
. 5
@kill Learning

I

li

A
® e

-

Figure 5.4.: The system diagram for a single iteration of skill learning within our
approach. The user specifies skill, initial state and instruction (z*,1, o),
and then iteratively refines the agents response by observing the resulting
behaviour b’ and providing a correction I'. Once b’ is aligned with the
instruction I, the updated skill z* and example (I,c) are added to the
respective libraries Z and €.

34

5. Method

Algorithm 1 Learning a Skill

1: Initialize Skill Library Zy and Examples &
2: z* < SkillParser(skill_description) > Choose current skill to learn
3: while True do

X N> 9

10:

11:
12:
13:
14:
15:
16:
17:

| < task_description > Provide task instruction
so < TaskSetup(initial_state_description) > Set up the environment
correction < & > Set initial correction
C+— O > Set initial task-specific code
while True do

examples < (I/,c})i=1,.xk € € > Retrieval based on [and correction

¢, ¢z« < Code-as-Policies(l, ¢, c;+, correction, examples)

b <+ Rollout(c) > Roll out policy code
if b is aligned with I then
E=EU(Lc) > Add example to library
break
end if
update correction based on b
end while

18: end while
19: Update z* in Z

35

5. Method

5.3. Managing the Context Window

Key to our approach is dynamic management of the context window, to effectively
leverage the in-context learning abilities of the LLM. As the number of few-shot examples
grows, appending all of them to the prompt becomes untenable. Moreover, most of
these examples are likely not relevant to the current task: given the task "fold the
cloth in half", knowledge related to opening a drawer is likely not relevant, and may
oversaturate the prompt [72].

We use two vector databases to store the few-shot examples (I, ¢) and the skills z,
indexed by the embedding of their natural language instruction and their docstring
respectively. We use ChromaDB for the vector database, and OpenAl’s text-embeddings-
3-model to compute the embeddings. When presented with an instruction I’, we retrieve
the K = 10 examples (I,c) with the highest cosine-similarity between ! and I’, and
append them to the prompt. Since we also store the skills in a vector database, we may
similarly retrieve these and add their function headers to the prompt.

It is worth noting that we can cripple the agent if we don’t perform retrieval of
the examples carefully, since the agent has access only to the knowledge we pass it —
without examples of basic functions, the agent can not call them.

On the other hand, when an agent has previously solved a similar task, and we
successfully retrieve this example, solving this task becomes trivial. It is also through
the examples that we steer the agent towards using the learned skills, and thus towards
reliably enacting the desired behaviour.

5.3.1. Hints

Our proposed framework enables a simple but powerful mechanism for steering the
agent, in line with the previously discussed idea of learning a shared language with the
agent: hints. The user can draw on this library of known behaviours, by deliberately
triggering the retrieval process. For example, the user might specify that a specific
previously learned behaviour could help in solving the current task.

This is particularly relevant during skill learning, since the agent is faced with an
unfamiliar instruction, and the agent needs to infer what the necessary substeps are (as
in LLM-based planning). This becomes more challenging as the number of skills | Z|
and learned behaviours |€| grows. Most of these skills and behaviours are likely to be
irrelevant, and hints provide a mechanism for the user to guide the agent towards the
correct specific subset.

When a sub-behaviour has not been learned, (i.e. is not being correctly produced
by CaP, and can not be fixed by providing a hint), and the skill that is currently being
learned fails because of this, this presents a cue to the user to pause learning of the

36

5. Method

current behaviour, and to learn the sub-behaviour first. Again, we rely on the user to
correctly interpret this, and to have an understanding of what behaviours the agent is
capable of.

5.4. Auxiliary Functions

We require two more functions to make this method work, and to enable an end-to-end
interactive behaviour creation experience: skill parsing, and task setup. We model
each as an individual Language Model Program, though realistically both would be
better complemented or even replaced by a GUL

Skill parsing (figure 5.5) refers to the process of inferring which skill the user currently
wants to learn. When the user declares the intention to learn a new skill, this involves
generating an appropriate function header, parsing appropriate parameters for this
function, and laying out the basic expectations of what this function should accomplish.
The skill parser also interacts with the skill library, in case the user wants to revise a
previously learned skill, and to prevent learning of redundant skills.

“I want to learn to St’aCk def stack_blocks(blocks, pose):
blocks in different places.” Z
-
—_—_—— Skill Parser . —_—_——
Z*

Figure 5.5.: The skill parser converts a natural language description of a skill into the
corresponding skill z*.

The task setup (Figure 5.6) LMP aims to reduce the friction of setting up the envi-
ronment, and allows a natural-language based environment setup. In our experiments,
this typically just means adding a specific number of blocks, with specific colors and
sizes to the environment.

37

5. Method

“Add 3 red blocks
and 1 green block.”

» | Task Setup >

5o

Figure 5.6.: Task setup involves getting the environment into an appropriate initial
configuration s.

In practice, this module can benefit from the agent itself becoming more capable:
as the agent reaches more diverse states s, we can name and store them in a vector
database, and use them to initialise further tasks. The simplest instantiation of the
task-setup module would be purely GUI-based, where the user drags the relevant
objects into the workspace and then issues a task.

5.5. Toy Environment

We test this method in a simple, block-based environment, building on the Ravens
benchmark [108] and modified for Code-as-Policies, set in pybullet (Figure 5.7). This
environment allows us to test whether we can generate long-horizon behaviours
interactively in a natural-language based manner, whether we can effectively instil
user knowledge, and whether we can reliably evoke specific behaviours with learned
commands.

We make similar assumptions to Code-as-Policies, which relies on ground-truth,
oracle knowledge of what objects are in the scene, as well as their positions, orientations,
and sizes. We consider this assumption only to be weakly limiting (especially in this
block-based environment) as these primitives can be replaced with perception pipelines
for the real world (see Sections 3.1 and 3.2).

Table 5.1 lists the basic primitives made available to the agent, prior to user interaction.
They comprise the perception primitives, for detecting an objects pose, size, and color,
as well as a single high-level control primitive for picking up a block, and placing it at
a specified pose.

We provide few-shot examples only to demonstrate the correct use of the API's, and
some showing how they can be coordinated together, to provide the simplest and most
general API setup.

38

5. Method

Figure 5.7.: The Toy Environment, with blocks of different sizes and colors, and a
6-DOF robotic arm with a suction gripper.

39

5. Method

Name Function

get_objects This function gets all objects in the environment.
The agent can retrieve specific properties of
these objects with the functions below.

get_object_color Returns the color of the block.
get_object_size Returns the size of the block.
get_object_pose Returns the pose of the block, given as a 3-

dimensional position vector, and a 4 dimen-
sional quaternion rotation.

get_bbox Returns the axis-aligned bounding box of an
object, to simplify collision queries.

put_first_on_second The main pick-and-place primitive. It picks up
an object at the specified Pose, lifts it vertically
to a specified height, moves along the x-y plane
to a point directly above the place Pose, then
moves it down until it detects contact.

move_end_effector_to Moves the end effector the specified position,
and suction gripper rotation.

Table 5.1.: List of the core-primitives for our agent to build on

As in CaP, we could also decide to include examples of more complex behaviours,
like placing blocks relative to one another, or using third party libraries to ease specific
computations. We opted not to do this, modelling the assumption that you can’t predict
in advance every behaviour you need to learn to effectively operate in an environment.

We share our code, as well as prompts and the initial set of examples in Appendix A.

40

6. Experiments

In this section we describe experiments conducted to validate our approach, but
primarily to demonstrate its potential. In the following, we first demonstrate how
we learn a single skill with this method, then demonstrate how skills like this can be
composed to enable temporally extended behaviours, show how hints can be used,
along with a qualitative discussion of the benefits our approach offers.

We note here that this discussion is necessarily qualitative at this early stage of inte-
grating Foundation Models with robotics, due to the novel problem-spaces Foundation
Models have enabled, and the lack of an existing infrastructure surrounding these ideas.
A more thorough validation would require tailored benchmarks and experiments with
non-expert users, which we did not have the resources to build/conduct within the
scope of this thesis.

6.1. Learning a Skill

In the limited block-manipulation environment, one skill that will be useful for many
downstream tasks, and that should be executable reliably, is placing blocks next to one
another, generalising across different block dimensions, rotations, and directions (visu-
alised in Figure 6.1). Since it involves the precise coordination of multiple perception
primitives, this is non-trivial, and our baseline CaP-agent fails it most of the time.

Figure 6.1 shows a simple user-defined curriculum to progressively learn the skill of
placing one block next to another block, and doing so in a predictable way across dif-
ferent block sizes, rotations, and directions. By proposing constrained tasks, correcting
the agent on each of them, and ensuring that the resulting behaviour aligns with the
users expectations, the resulting function encapsulates all of these expectations.

In practice, curricula like the one in Figure 6.1 would likely rarely be as linear. The
user might try to build on the skill move_block_next_to_reference, only to notice
later that it doesn’t always behave exactly the way the user expects, and may then
return to learning this skill.

For each "test", the user sets up the environment with a prompt (e.g. "add 4 blue
blocks and 1 red block"), gives the task (e.g. "put one blue block on each side of the red
block"), and then provides corrections to guide the LLM’s outputs. Figure 6.2 provides

41

6. Experiments

put_first_on_second

get_object_pose || get_object_color

v

C “put the blue block on {...} side of the red block...”) Use numpy and scipy

to compute place

position
‘ C “..with a gap between them”

C “_.the red block is rotated”) &

C “...for different block sizes”)
Add a gap, to

account for imprecise
place primitive

e,

Use skill

get_object_size

in axis-dependent
way, on both the
reference block and
the placed block

def move_block_next_to_reference(

block: TaskObject, referenceBlock: TaskObject, axis: str, gap: float = 0.005
):

"""Moves the block next to the referenceBlock such that their edges are aligng
A F

Figure 6.1.: A basic task curriculum to learn the skill of "placing one block next to

another block", encapsulating the user’s expected behaviour across different

axes of variance, elicited via repeated interaction and corrections by the
user.

42

6. Experiments

def move_block_next_to_reference(
block: TaskObject, referenceBlock: TaskObject, side: str

{

“When you put the blue block down, it sometimes hits
the red block, try adding a gap between them”

"

“That gap is too big, make it smaller

“Perfect!”

def move_block_next_to_reference(

block: TaskObject, referenceBlock: TaskObject, side: str, gap: float = 0.005
)

Figure 6.2.: Correcting a faulty behaviour caused by imprecision in the pick-and-place
primitive. This fault is simple for a non-expert to identify and correct. The
user preference for the appropriate "safe”" gap is encoded in the default gap
parameter value.

a single instance of this, to show how this curriculum progressively forces the LLM to
generate more general code.

For instance, every 10 runs or so, the agent places the block in such a way that it lands
on the edge of the reference block, and rolls over, probably because of an imprecision
in the pick-and-place primitive. Correcting this fault requires reasoning over multiple
runs, interpreting the full trajectory to determine where the fault arises, and then
suggesting a sensible correction, all of which would be difficult for any LLM-based
autonomous agent to make independently, but are trivial for humans to observe and
point out.

We can also justify our use of skills with this simple example, by comparing with a
baseline that generates flat function codes for each task. By introducing the skill, we
are initially increasing the difficulty of the problem faced by the code-writing agent,
because it needs to infer which codes are task-specific, and which are skill-related (i.e.
what is flat function code, and what is skill code). However, few-shot examples play a
crucial role in steering the LLM towards the correct solution. For instance, if the agent
has solved a task t = (I,sg) previously, we could just retrieve the flat solution code

43

6. Experiments

get the blue block and the red block (get_blocks is a learned skill)
redBlock = get_blocks(color="red")
blueBlock = get_blocks(color="blue")

logic for placing the blue block on the right side of the red block # get the blue block and the red block (get_blocks is a learned skill)
blueBlockPose = get_object_pose(blueBlock)

° j ° redBlock = get_blocks(color="red")
blueBlockSize = get_object_size(blueBlock) blueBlock = get_blocks(color="blue”)
redBlockPose = get_object_pose (redBlock) —> -

redBlockSize = get_object_size(redBlock) # logic for placing the blue block on the right side of the red block
target_position = (redBlockPose.position.x, move_block_next_to_reference(blueBlock, redBlock, side="right")
redBlockPose.position.y + (redBlockSize[1] + blueBlockSize([1]) / 2,
redBlockPose. position.z)
target_pose = Pose(target_position, redBlockPose.rotation)
put_first_on_second(blueBlockPose, target_pose)

Figure 6.3.: On the left side we generate flat solution codes, on the right we encapsulate
the skill logic in a function. When the skill code is rewritten, the flat solution
code is implicitly updated too.

c € (1,s0,¢,s7). In Figure 6.1, this would mean we would store the codes in step (1) as
valid examples for the prompt "put the blue block on the ... side of the red block", even
though these contain failure modes identified later.

We want to keep these examples (I, s, ¢, sT) because they contain valuable informa-
tion about the mapping from a task (I, sp) to the desired final state st. Our approach
makes this possible, by abstracting away the logic for move_block_next_to_reference
in a skill, such that the solution codes that call this function from step (1) remain valid
(see Figure 6.3).

Moreover, this ensures that user feedback like the gap parameter, learned later, is
integrated every time the user tries to place a block next to another block.

6.2. Learning a Long-Horizon Behaviour

In this section we describe an extended user interaction to enable the long-horizon
behaviour of building a house, from a set of blocks with different dimensions. This re-
quires allocating the different block types to different parts of the house, and accurately
placing them.

In the CaP paper, the authors state that: "In the tabletop domain, it would be difficult
for LMPs to "build a house with the blocks’, since there are no Examples on building
complex 3D structures." We believe that even if there were such examples, CaP would
not be capable of this, unless those examples were specifically of building houses, and
at a sufficiently high level of semantic abstraction to leverage LLM "common sense".
We show that CaP is capable of this, provided the right cognitive architecture, and
extensive human interaction.

This is made possible by allowing the user to decompose this problem into subtasks,
and interactively correcting and refining CaP code generations for each subtask. Figure

44

6. Experiments

6.4 shows the key sub-behaviours for achieving this, as well as the resulting skill-tree.

get_blocks_by_color

get_object_color

(b) The corresponding skill tree. Core primitives are marked in blue, skills learned indepen-
dently from the task of building the house in red, and skills learned specifically with the
aim of building a house in gray.

Figure 6.4.: Example of a long-horizon behaviour "build a house", enabled by extended
user interaction.

Only a subset of the skills needed to build the house were actually learned in the
context of building the house, while others were learned previously to achieve specific
behaviours not included in the initial set of primitives.

45

6. Experiments

6.3. Hints

In this section we demonstrate how we can apply a hint, in order to make sure prior
knowledge is incorporated into a new behaviour.

When we try to learn the skill of "lining up blocks next to each other", the agent
initially tries to come up with solutions for the task that call the core set of primitives,
similar to the ones initially proposed when learning to place blocks next to each
other, leading to the same issues. We can incorporate the knowledge encapsulated in
move_block_next_to_reference by applying the hint "we learned to place blocks next
to each other, use that" (Figure 6.5).

“Let’s learn the skill to make a “Use the skill for placing blocks next
line with blocks” to each other”

make_line_with_blocks

make_line_with_blocks

| move_block_next_to_reference

Nl I

put_first_on_second

put_first_on_second get_object_size get_object_pose

get_object_size get_object_pose

Figure 6.5.: Example of applying a skill hint. The skill for making a line with blocks
inherits the knowledge instilled while learning how to place blocks next to
each other.

In a similar way, we could provide context for the agent by telling it "skill agent is
learning is like skill agent has already learned", thus inserting the actual skill code into
the agent prompt, though we leave this for future work.

6.4. Advantages of learned skills

A simple alternative approach to our chosen method of learning skills (i.e. python
functions) is to simply generate flat solution codes and to store and retrieve those. The
problem statements are very similar, but learning skills has some clear advantages,
discussed in the following.

46

6. Experiments

6.4.1. Encapsulation

Functions explicitly model the assumption that we don’t want the agent to alter this
behaviour when it uses it. When the agent calls a skill, the concrete implementation is
hidden behind this function call. Attaching flat function codes would allow the agent
more flexibility, however this also increases the chance for errors. Assuming we’ve
sufficiently tested a specific learned behaviour for alignment with our expectations, this
flexibility has no advantage.

This is important, because LLM outputs can be very sensitive to inputs. This is
particularly relevant in our scenario of dynamic prompt composition, where it is not
just the task text that is varying.

By generating shorter example codes using skills (in which the agent mostly has to
correctly set the arguments a skill call), we reduce the number of parameters the agent
can vary, thus reducing noise. A larger chunk of the agents behavioural response to
any task prompt becomes deterministic. Figures 6.3 and 6.6 provide examples of this.

6.4.2. Interpretability

By introducing these functions, we introduce a single source of truth for the robot
behaviours, which would not exist if we stored flat solution codes. This allows us to
pinpoint and correct the source of errors more easily, both on the user-end, and on
the end of an engineer capable of interpreting the code. This is important particu-
larly in real-world scenarios, where the primitives the agent builds on are not oracle
observations, and may also produce invalid responses.

Beyond introducing a single source of truth, the temporal abstraction also leads to
more semantically meaningful code. Figure 6.6 demonstrates this.

def make_smiley_face():

Arranges blocks in the workspace to form a basic smiley face pattern in the middle of the workspace.
The smiley face consists of eyes, a mouth, and a circle around it.

Note:

This function builds the smiley face in a predefined formation in the middle of the workspace,
ensuring no parameter variance or additional configuration is required.

Collect objects and get middle of workspace (omitted for brevity)
..
Place the eyes and mouth in a triangular pattern
place_smiley_face_features(cylinders[0], cylinders[1], mouth_block, smiley_center_pose)
Define a smaller radius for the surrounding circle

radius = 0.15

Use remaining blocks (cubic) to form a circular pattern around the smiley face
arrange_blocks_in_circle(blocks, smiley_center_pose, radius)

Figure 6.6.: Skill-based code is more interpretable than flat code, and restricts the
parameters that can be varied by the code-writing agent. The corresponding
flat code was too long to be included here.

47

6. Experiments

Another advantage is that we can talk to the agent about what it is capable of, by
interacting with the skill library Z and example library £. While the actual language
instructions that the agent has correctly handled in the past may provide a more
intuitive interface, skills represent concrete generalisations of behaviours, leading to a
much smaller and more manageable space of options. We leave this for future work.

6.4.3. Defined axes of generalisation

Functions allow us to define the desired axes of generalisation, along which we test
and evaluate the LLM, as demonstrated in the block placing example in section 6.1.
We believe it makes sense to specify the desired axes of generalisation in reusable
behaviours. Figure 6.7 shows another example of how this feature can be used,
generalising over the pose and dimensions of a block structure.

def build_structure_from_blocks(
blocks: list[TaskObjectl],
dimensions: tuplel[int, int, int],
pose: Pose,

Figure 6.7.: Functions parameters allow us to define axes along which we expect a skill
to generalise. This is important to maintain the semantic meaningfulness of
skills, and to ensure skills are reusable.

For example, one could imagine a robot that is supposed to scoop ice-cream, with
arguments for the number of scoops and the flavour it’s supposed to scoop, given the
necessary constituent skills e.g. for navigating to the bucket, scooping, placing the
scoop in the cup, and handing the cup to the customer.

6.4.4. Targeted and deliberate integration of preferences

An important consideration for robot behaviour in everyday, general scenarios, is the
integration of user preferences. Prior works [109] [97] have approached this problem by
directly storing these preferences, and retrieving them in a task-related manner. In our
method, these preferences can be integrated in a deterministic manner, and attached to
specific behaviours i.e. skills. Figure 6.2 provides one example of this, with the gap
parameter, which was tuned by user interaction. Another somewhat contrived example
for this is provided in figure 6.8.

48

6. Experiments

def is_big_red_block(block: TaskObject) -> bool:
"""Function to verify whether a block is 'big red block'.
A big red block has side lengths longer than 5cm"""
return get_object_color(block) == "red" and min(get_object_size(block)) >= 0.05

def pick_and_place_big_red_block(
block: TaskObject,
place_pose: Pose):

Function to pick and place a 'big red block'.
Big red blocks should always be picked up on one end of the block.

Figure 6.8.: Assume we want a CaP-based agent to always pick up big red blocks on
one side of the block, rather than in the center. Our method introduces a
mechanism for iteratively refining how to do this, and then reusing this
behaviour only when desired.

6.4.5. Preconditions

Functions also allow us to explicitly model preconditions, similar to the ones used in
Task-and-Motion Planning methods, for example by introducing error handling (figure
6.9). These error messages can be traced back to a specific method in the call stack,
and other functions can catch these errors as appropriate. Alternatively, the error can
simply be relayed to the user, to let them determine how to respond.

def build_structure_from_blocks(
blocks: list[TaskObjectl,
dimensions: tuplelint, int, int],
pose: Pose,

def pick_and_place_big_red_block(
block: TaskObject,
place_pose: Pose):

if not is_big_red_block(block):
raise Exception("The block isn't a big red block.") if len(blocks) < dimensions[@] % dimensions[1] % dimensions[2]:
say("There's not enough blocks!")
return

Figure 6.9.: Examples of how we could add preconditions to skills.

6.4.6. Continual Learning

Prior works have pointed out that prompts quickly oversaturate when attaching too
many few-shot examples [47], and that this constrains the number of primitives that
can be made available to the agent. By retrieving these examples in a task-specific
manner, we alleviate this restriction, at least in theory allowing an effectively unlimited
number of reliable mappings from natural language instruction to behaviour. This is
the quality we referred to previously as learning a shared language. Figure 6.10 gives
some examples of instructions we taught our agent in the blocks domain, inspired by
LohoRavens [110].

49

6. Experiments

Figure 6.10.: Different learned behaviours, which are now reliably executable with
concise prompts, since we taught the agent what we mean by them. From

non

left to right: "stack the blocks (from biggest to smallest)", "make a smiley

"non

face", "build a jenga tower", "place (blue block) diagonally to the (front-

noar

right) of (red block)", "build a zig-zag tower", "build a block pyramid".

=

Our method also enables a simple integration of new API methods, again, importantly
without requiring any prompt engineering. Figure 6.11 provides an example of this.

Figure 6.11.: The API can be extended without any prompt engineering. The engineer
provides a new skill, and the user can test its applicability via trial-and-
error interaction in the environment.

6.5. Challenges

There are many challenges with this setup, that in its current state hurt its applicability.
Significant tuning would have to be done to enable effective black-box interaction with
non-expert users, though we believe this thesis demonstrates a step in that direction,
and can in principle already be tested in this context. As the method gets stronger,
by integrating with the many other complementary methods within the Foundation
Model Agents literature (see Section 7.3.1), the LLM becomes a more capable translator,
and we believe the amount of human trial-and-error required to learn new behaviours
will decrease.

50

6. Experiments

In the following we describe the various failure modes and challenges of our method,
and the context surrounding it.

6.5.1. Limited ability to respond to feedback

Although the LLM enables natural language interaction, feedback can’t always be inte-
grated effectively. We tried many things to enhance this ability (including introducing
skills), but overall this ability is quite brittle, and it is often not clear what exactly is
going wrong. One solution to this, is to define many skills, such that the LLM generates
very short codes, and that makes it more capable of incorporating feedback, but this
makes the entire process somewhat more laborious.

6.5.2. Writing code

We view the strength of our approach in relegating the LLM to the role of translator,
translating language instructions into executable python code. The more complex the
instruction, and the more it is removed from the existing skills that it is building on,
the more difficult this problem becomes, and the more room for error there is. While
syntax errors are relatively rare, and mostly related to calling functions for which it
doesn’t have sufficient few-shot examples in the current prompt, we describe some
other common issues in the following.

Code Rewriting Loops

When learning a skill over multiple tasks, we adapt the same code multiple times. We
prompt the LLM to take this into account, but of course it often ignores this. While we
can check if the updated skill code still successfully solves the prior tasks on which it
was trained (not all tasks that use it), there is currently no better mechanism than just
telling the LLM "now you're not solving {task} anymore, {this is what’s going wrong}",
leading to code rewriting loops. This is primarily an issue when the skill being learned
requires more complex logic. This can be circumvented somewhat by learning more
constrained skills, however we may also argue that such functions could simply be
filled in by an engineer capable of doing so.

Updating and Setting Skill Parameters

The Skill Parser is supposed to extract the relevant parameters for the skill proposed
by the user, and as such serves a crucial function. However, it will sometimes infer
strange function arguments, which can be corrected with user interaction, but work
would need to be done to make this feasible with non-expert users.

51

6. Experiments

Moreover, it is difficult to change the function parameters after having learned a skill
unless we also provide default values, since otherwise all examples and skills that call
this skill will have to be rewritten too. Although in our toy environments and tasks,
and under the supervision of a developer, this was not too difficult to avoid, it would
require specific mechanisms to handle this.

Invalid or Unnecessary Assumptions

Another problem we encountered was that the agent made invalid or unnecessary
assumptions. Some could be teased out by continued interaction. Some assumptions
are related specifically to code design choices, that the agent then needs to reliably
follow. For instance, many skills get passed a list of blocks to use - in some functions,
the agent chooses to remove these blocks from the input list. Even if the agent makes
a note of this, this can lead to errors that are difficult to interpret. We might observe
over time that the mistake always happens when a specific skill is called, so the user
could just try relearning it, or an engineer could be involved. Alternatively, introducing
mechanisms for the agent to explain its reasoning could enable a kind of natural
language debugging, which might be possible if skills are kept sufficiently concise. In a
similar but less harmful way, LLMs will write reasonable but ultimately meaningless
code (e.g. center_of_workspace.translate((0, 0, 0))).

Separation of Task and Skill Code

Related to this, another difficulty we introduce with our separation between task and
skill code, is that it is not always obvious where this separation lies. In some cases,
task-specific code, like the location at which a block should be placed or a structure
should be built, was included in the function code, in spite of being a parameter.
Again, this can be teased out by sufficiently testing the skill with different tasks, but it
increases the difficulty of the problem faced by the agent. We could try to address this
by introducing another reasoning step, focused purely on correctly establishing this
separation, or simply by generating both codes separately.

Poor Design Choices

A problem we encountered specifically in our implementation, was that we introduced
custom types, which turned out to hamper the performance of our agent, since it
made it more difficult for the LLM to effectively leverage pretraining knowledge about
third-party libraries like numpy. For example, we introduced custom types for Point3D
and Pose, with the intention of allowing parameter type annotations, but these would
occasionally cause errors when the LLM interacted with them incorrectly.

52

6. Experiments

6.5.3. Retrieval

Dynamic prompt composition also comes with some drawbacks. The agent simply
doesn’t know about functions that don’t get included in the prompt, which can severely
cripple the agent. With hints (Section 6.3), we have provided a simple and effective
mechanism to remedy this, though this requires an understanding of the agents
capabilities, or simply more trial-and-error. Alternatively we could employ top-down
planning approaches, as discussed later in Section 7.3.

We note that this is primarily an issue during skill learning, since the agent is dealing
with unfamiliar prompts. At test-time, we only expect the agent to be able to respond
to instructions similar to ones it was previously trained on. The natural language
capabilities of LLMs ensure that familiar tasks can mostly be retrieved successfully,
though it is unclear whether this will remain the case if we expect the agent to perform
a much larger number of behaviours.

6.5.4. User experience

Our method is, at its core, a natural language interface for robot programming. How-
ever, the interface we created is still fairly laborious in its interaction, and there are
many simple friction factors that could have been reduced to create a more seamless
experience. For example, if we are learning a skill, and then realise we need to learn
another subskill first, in our current setup this involves breaking off learning of the
current skill, initiating learning of the subskill, along with the corresponding task setup,
then returning to the skill we were initially learning and applying a skill hint to indicate
that the subskill should be used. This is primarily a Ul issue, which could be fixed
simply by introducing a mechanism for it. Many functions in our method would be
complemented well with a GUI, discussed further in Section 7.3. As it stands, this is a
significant limitation in truly leveraging human input effectively.

6.5.5. Environment

While we present a broad idea, we only test it in a very constrained environment, and
one not necessarily well suited for leveraging human intuition. The Ravens benchmark
[108] was developed for planar pick-and-place, meaning end-effector motions were
either vertical (along the z-axis), or along the x-y plane at a specified height over the
workspace, where the exact path the end-effector takes to go from point A to point B
doesn’t matter much.

We were incapable of eliciting some more interesting and conceptually simple be-
haviours, since the controller used in this environment is based on a simple way-point-
based wrapper around pybullets built-in Inverse Kinematics (IK). For example, with a

53

6. Experiments

slightly modified API (that enables picking up an object without dropping it), it would
have been straightforward to demonstrate a robot playing jenga, but the IK-based solu-
tion was incapable of generating straight-line end-effector motions in cartesian space.
Similarly, we were unable to reliably rotate the end-effector when the axis was not
purely the z-axis, although this too could have enabled interesting behaviours. As such,
we were limited mostly to planar pick-and-place tasks, like the ones demonstrated in
the initial Transporter networks paper. This demonstrates how the effective API-design
determines the downstream behaviours that can be learned.

More sophisticated controllers, learning-based methods, or motion-planning algo-
rithms could have made this possible, but this remained outside of the scope of this
thesis.

Beyond these weaknesses, we are of course also limited by operating in a purely
block-based environment. It leaves much open with regard to demonstrating the
potential of our method. Implementing such a robot API effectively requires some
expertise, distinct from the knowledge required to build the layer of Foundation Model
based factorised perception-and-control algorithms you could build on top of such an
APL

54

7. Discussion

We demonstrated that it is possible to learn new skills via user interaction, and described
the advantages that this promises. However, to really motivate this idea, much work is
left to be done. In the following, we provide a brief discussion of our work, followed
by suggestions for extending it.

7.1. Novelty

The primary novelty of this thesis, is that we propose a method that allows Foundation
Model agents to learn from user interaction, tailored to the context of robotics, where we
have argued it is particularly relevant. This provides a step into the direction of robots
that are endowed with relatively basic capabilities, but that can easily be adapted to the
affordances and demands of specific environments. We view python as a reasonable
choice for this high-level functionality, particularly for rapid prototyping.

In our method, we reduce the burden on the LLM as an agent, and treat it rather as a
translator, that slowly enables the generation of personalised robotic behaviour via a
learned shared language between robot and human. The robot progressively becomes
capable of responding to natural language prompts the way the human expects, through
iterative and interactive refinement.

We propose skills as an effective mechanism for instilling this knowledge, and
demonstrate how we could leverage modern robotics simulators to learn such skills. Our
method for dynamic prompt composition based on Retrieval-augmented Generation
allows for the integration of a larger number of distinct primitives and behaviours. A
core strength of methods that build on code generation to produce robotic behaviour is
modularity, and we provide a controlled mechanism for organising this modularity.

Moreover, similar to VOYAGER [89], we demonstrate that classical ideas from
Reinforcement Learning, like curriculum learning and hierarchical learning have an
important role to play in the context of LLM-based code generation, in that we may
employ them to slowly steer the LLM to the desired outputs.

The most interesting marker of how successful a method is, is what it makes possible.
We are confident that our approach extends the capabilities of Code-as-Policies by
leveraging human interaction, and that this difference would become more pronounced

55

7. Discussion

as we add more interesting control and perception primitives, tested in more interesting
environments.

7.2. Limitations

The primary limitation of this thesis is that we were unable to provide a truly convincing
demonstration of our approach. We were able to demonstrate that it is possible, and
justified why this is useful in principle, but we were unable to provide convincing
examples of this.

This was in part due to the restricted set of examples and skills we started out
with, with which we unnecessarily hampered our agent. In retrospect, we should have
introduced more functions (including LMPs) from the get-go, and simply demonstrated
how you can recombine them, sequence them, and refine them to generate novel
behaviours, that we can evoke reliably, and tested what happens when the number of
behaviours gets large. While we showed that we can grow the space of behaviours from
a small starting set, we believe that the results would have demonstrated the power of
our approach more meaningfully if we had expanded this starting set.

Moreover, we were limited to a mostly qualitative evaluation of our results. This is a
general consequence of the nascence of this area of research, and the wide variety of
methods, each suited to their specific problem statement. There was a large number of
possible alternative design choices we could have made in implementing our method,
many of which we weeded out by trial-and-error. For example, we considered a variant
in which we generate flat, task-specific codes while learning a skill, and later use an
LLM to separate the task- and skill-specific logic, but found this to be unsuccessful.
We also tried an approach similar to CodeChain [44], in which we prompt the LLM
to write modular code to solve each task, and then later try to cluster the generated
functions to filter out the reusable behaviours. Each of these would have allowed for a
more intuitive user-interaction, removing the step of explicitly specifying the skill we
want to learn. We found neither of them to work, though this may simply be because
we didn’t try hard enough. We discuss this further in Section 7.2.1.

Another key limitation of our approach is that the Ul is currently quite unwieldy. It
is possible to elicit the desired behaviours via human-in-the-loop trial-and-error, but
it is often not a pleasant experience, though this could likely also be improved with a
richer set of primitives. Ultimately, the primary way to improve this experience is to
provide more specific and powerful user interactions, coupled with an expressive and
understandable GUI, as discussed in Sections 7.3.1 and 7.3.4.

56

7. Discussion

7.2.1. Evaluation

How could we evaluate a method like this? Prior works (e.g. DROC [109], LMPC [48])
similar to ours have focused on the number of corrections required to get to the desired
results. Effectively assessing this would require studies with non-expert users, and
likely a GUI (see Section 7.3.4) to report in a meaningful way, as well as standardised
and well-tuned implementations of baseline algorithms (e.g. with the same set of
primitives).

In DROC, the authors report results collected on a real-world robot, meaning that
to replicate their results, researchers would have to set up similar manually created
task-sets, then interact with the system over an extended period, providing corrections.
This makes replicating results cumbersome.

Similarly, in Language2Reward [103], the authors compare with Code-as-Policies in
a continuous control setting (e.g. to control a quadruped), and thus need to choose a
viable set of primitives for CaP. This choice determines what CaP is capable of, and a
more extensive set of primitives might have allowed it to perform better, making this
a weak comparison. Moreover, although their chosen reward-function based API can
generate more diverse behaviours, these behaviours don’t fulfil basic expectations (like
motion smoothness, or only using specific actuators when they are actually needed).

ChatbotArena [15] offers some inspiration, directly computing performance scores
based on human preferences. A simple way to translate this to the robotics domain
would be to record prompt-behaviour pairs, and have humans evaluate those. We
believe that this kind of human-centric evaluation will become the norm as the space of
behaviours that robots are capable of grows.

7.3. Future Work

7.3.1. More advanced cognitive architectures

We proposed a specific cognitive architecture to enable user-centric skill learning in
Foundation Model agents, taking advantage of robotics simulators. The research
area that studies such Foundation Model agents is growing explosively, and is being
explored in a wide variety of contexts. We view our approach as complementary to
many of these methods.

For instance, a particularly common application of LLMs is to act as Planners, to
decompose a task into its subtasks in natural language. While we technically do this
by expressing the plan in code, the skills and examples that are available to the agent
need to be retrieved dynamically. For example, during skill learning, the agent could
autonomously propose relevant subtasks, and thus autonomously retrieve examples

57

7. Discussion

accordingly, possibly alleviating the need for user-provided hints, and more quickly
providing better responses.

When evaluating whether the updated skill code still solves prior tasks as expected,
semantic verifiers which use a VLM [21] [110] to validate task success could perform
the initial check. In our blocks environment, we experimented with position-based
equality checks, similar to the ones used in the original Ravens benchmark environment,
however even here these were often too strict.

An important function similarly omitted in this thesis, is a simple mechanism for
translating plans expressed as code back into natural language. This would provide
a stronger basis for a non-expert user to provide corrections, and would be simple to
implement, since the LLM already documents its reasoning steps in comments in the
code.

Moreover, skills are somewhat overloaded in our method right now, serving as the
universal mechanism with which a user can break a task apart into substeps. Often,
this will lead to overly fragmented skills, where we would prefer not to semantically
separate subtasks, because we will not use them separately later on. However, as the
number of subtasks we squeeze into a single prompt increases, the agent becomes less
capable of responding to it, meaning the only choice in our current implementation is
to separate them into skills. This is a weakness of how we currently implement our
method, and could be corrected simply by adding more features to the Ul For instance,
a powerful addition would be to allow the user to learn a skill subtask by subtask,
focusing LLM code generation on smaller windows of the code.

In a similar way, the user should be able to step backwards if the LLM response got
worse in response to feedback. Since LLM responses are noisy, another useful function
would be to simultaneously generate multiple responses to the feedback, allowing the
user to choose the best one (similar to the evolutionary approach adopted in EUREKA
[52]).

7.3.2. Richer primitives

A simple but important modification to our method would be to replace the oracle
perception modules with something that would actually be executable in the real-world.
For example, a common pipeline for understanding a scene visually is to use an open-
world segmentation model, followed by VLM labelling of segmentation masks, and
augmented by point-cloud data from a depth camera to provide accurate positional
sensing.

Similarly, it would be crucial to enable more robust and expressive robot motion
primitives. This could be achieved for example by integrating more powerful control
methods (e.g. Operational Space Control [38] or Model Predictive Control [42]). MINK

58

7. Discussion

[105] offers a differential inverse kinematics controller tightly integrated with the
powerful physics engine Mujoco, similarly capable of performing more interesting
motions. Alternatively, we could rely on traditional trajectory planning approaches.

Integrating with richer control methods also poses an avenue for interacting with
richer embodiments, as demonstrated in Language-to-Reward [103]. Building on a
fast implementation of Model Predictive Control (also Mujoco) [25] and providing a
simple robot API based on reward functions (e.g. set_torso_height(0.5)), the au-
thors demonstrate quadruped control from natural language instructions. Although
the authors compare with Code-as-Policies, we view these approaches as complemen-
tary. Some problems are more suited to symbolic logic, and some to optimal control.
Importantly, they do exclude each other when we are restricted to relatively small APIs,
as is the case with hand-engineered and fixed prompts.

Following a slightly different direction, we can also introduce Language Model
Programs for specific subproblems, as put forth in Code-as-Policies and discussed in
Section 3.2, and integrating and coordinating many of these provides an interesting
direction. These could be added as primitives, or they could be learned in the same way
that we learned skills (explored in PromptBook [4]): instead of a skill being represented
as a python function, we could represent it as an LMP - the user defines its purpose,
iteratively adds preferences to it, and collects examples, and leaves it up to the LLM to
produce the correct program code given the current instruction. The tradeoff is that
each LMP introduces further latency.

7.3.3. Tailored Environments

To truly test the capabilities of methods like the one presented in this thesis, there is
a need for rich environments, tailored to the context of Foundation Model agents, in
which agents build on an existing set of perception and control primitives. Such an
environment would ideally come with predefined and standardised sets of primitives
for different embodiments, along with a straightforward mechanism for setting up
tasks. We briefly mention some existing benchmark environments that would likely
have made for more interesting experiments.

RLBench [33] provides a large set of more semantically meaningful tasks, and in
VoxPoser [28] the authors set up a Code-as-Policies API tailored to their method.
Robosuite [113] directly integrates with more powerful controllers, and provides an
interface for teleoperation I/O devices for user interaction, like a keyboard or space
mouse, which could be used to learn low-level skills (demonstrated in [55] [63]). Most
relevant is Orbit [57], for its inherent focus on modularity, on supporting a large
variety of robot learning frameworks (RL, TAMP, LfD), and providing a GUI for scene
generation.

59

7. Discussion

7.3.4. User interface

While we presented a text-based interface, many aspects of our approach would be
better suited for a GUI For instance, while text-based retrieval of skills when applying
skill hints (Section 6.3) is likely a good choice anyway, coupling this with a GUI, and
visualising skill trees generated during a specific behaviour would further enhance
interpretability. We may imagine a simple drag-and-drop based interface for building
behaviours, allowing users to attach feedback to specific parts of this behaviour, with
the LLM acting primarily as the glue that combines the skills into executable code that
reflects the users intentions.

For every skill, we define a number of skill tests, that verify that this skill behaves as
we expected, and represent what the skill does in a visual and semantically meaningful
way. As we try to solve new tasks, a simultaneous visualisation of how the updated
skill-code performs on the prior tests would also be helpful.

Moreover, the chat-based interaction is quite unwieldy, and simply adding buttons
would be helpful. For instance, at every chat-turn, the user has to decide whether
the task was solved successfully, whether to provide feedback, whether to re-run the
behaviour to verify whether it was successful, to simply try to generate the solution
code again, or whether to give up on the current skill. Another viable function would
be to explicitly attach a precondition (Section 6.4.5), and there are likely many more
such functions we could identify. If we were unable to learn a skill, it would be useful
to keep track of this, either to try again later, or to notify an engineer to take a look.

Similarly, as mentioned previously, we setup tasks via a simple LMP to add objects to
the environment, though imbuing this LMP with a stronger API would lead to a more
seamless experience. In principle, this LMP could learn to follow user instructions
in a similar manner that the agent can. For example, we trained our agent to build
a jenga tower. By storing this configuration, we enable interesting downstream tasks
(inspired by MetaWorld) like put-block-in-fixture, or remove-block-from-fixture (i.e.
play jenga), without having to rebuild the tower every time, without having had to
write task setup code ourselves. Again, presenting those configurations in a GUI would
make this interaction more seamless.

There are some existing examples of GUIs for chat-based behaviour creation with
Large Language Models [55] [36] [103], visualised in Figure 7.1. We view our work
as complementary to each of these, in that we proposed a cognitive architecture to
empower the chat-based interaction, rather than on the creation of a scalable end-user
UL

We believe such a UI to complement the fundamentally natural language interaction
is crucial to further reduce the friction in the human-robot interaction.

Alternatively, of course, reality presents the simplest environment for allowing a

60

7. Discussion

person to set up different tasks - you simply place the objects, and start learning. On
the other hand, this precludes the simple resets we take advantage of heavily while
iterating through robot code, as well as replay of prior solved tasks &,. Ultimately, we
think that our method is better suited for learning in simulation, with the promise of
simpler real-world deployment.

7.3.5. Finetuning

Finetuning represents a simple mechanism for refining the agents responses to user
prompts. In this thesis, we relied on the GPT-4 API, which provides a strong general-
purpose model, though it is possible that we could improve performance by finetuning
the agent on code that follows specific style guidelines, uses useful third-party APlIs, or
even on successful user-generated codes. We think this provides a promising avenue,
since we aimed to force the LLM into a constrained problem space, in which it generates
code that represents user intent as concisely as possible. ProgPrompt [75] provided
suggestions for achieving something similar via In-Context Learning.

In Language Model Predictive Control [48], the authors propose a finetuning strategy
directly in the context of better responding to feedback from non-expert users. They
demonstrate that finetuning can be used to enable the LLM to respond more effectively
to the user at each interaction turn, i.e. learning how to respond better to natural
language feedback. Interestingly, the authors also point out that some users were
simply better at interacting with their system, i.e. more capable of providing the right
instructions to elicit the desired behaviours.

7.3.6. Experiments with non-expert users

A central hypothesis of this thesis is that non-expert humans are capable of correcting
robot behaviour, inspired by prior works [109] [103] [48] [97]. We did not get to actually
testing this hypothesis ourselves, and this would be a worthwhile future goal.

Since Foundation Models are relatively recent, only a relatively small body of research
has focused on this problem, and much remains to be learned and explored about how
humans would interact with robots, given the opportunity to talk to them.

61

7. Discussion

Allowing end-user developer
to edit the generated code

5 FunctionLibrary {mport Functionlib |

inport rospy

def pour_liquid cylinder name, beaker name H
| # Initialize rospy and function Ubrary |
rospy. init_node 'gpt" |
b = Functionib '

Get the object dimension and location |
cylinder dins = Lib.get object dimensions(cyl
cylinder loc = Lib.get object location cylind:

Move to the cylinder, grasp it and move up |
| lib.go(cylinder loc(6), cylinder loc(1), cyli
icylinder_loc'3, cylinder loc(4), cylinder loc(5)
i lib.Close_gripper cylinder_name. !

Pour the contents into the beaker ' T ——————
Lib.pour beaker_nane 0 i By o e e 55 S X

| # Hove back to the starting l0cation of the | | b toiss werkpse s mates 6.8 ands rspsanay Tos s sdvevety aing

11b.go cylinder loc), cylinder loc (1], cyli) | oot s soime in s ohog B Topichne i A g e s ttne
lcylinder oc'3 . cylinder loc'4 |, cylinder loc's | 5 Fukmrinc ety g os el
e —— LT T ——————
] el L | S R AT A

ety e g
Return to home position g -

| Uib.nove to_home position
| rospy.sleep 0.5 A o 1
""""""""""""""" ,’ " Ibeaker to the workspace at markers 5, 6, 7, 8 and 9, respectively. is achieved by calling the i
) 1add_cylinder_to_workspace function and specifying the respective marker. After adding all the objects to the !
Conversation-based iworkspace, the robot moves back to its home position. '
robot program generation |URS> Please run the code by using the terminal... :

|URS> Ready!

1URS> Code saved with number 1

{User> Please write a function to pick up any graduated cylinder and pour into the 500mL beaker. After pouring, |
!put the graduated cylinder back to its original position. Make sure when you put down the object, it should be at!
ithe same height when you picked it up. i

(a) Alchemist [36] UI to enable natural-language based robot program authoring.

Connected

u ° n 1D: 0a4343b8

Robot status

@ Asking ChatGPT a question done in
3.251 seconds.

@ The robot asked you a question: Do you
have any feedback to add?

| You answered the question.

@ Finding the object 'at the right of all the
objects on the table' done in 0.746
seconds.

. @ Planning how to pick up the object done
Interact with the robot in 15.787 seconds.

There is nothing to do, for now.

(b) HaLP 2.0 [55] UI for lifelong robot learning powered by non-expert users.

Figure 7.1.: Two examples of GUI’s to enable robot programming by non-expert users,
each based on using LLMs for code generation.

62

8. Conclusion

Foundation Models have driven a fundamental shift in robotics research. Recent
approaches, based on a simple, fixed set of core perception and control functions
orchestrated by an LLM have enabled robots to respond to natural language instructions,
without any further training, accomplishing a wide variety of tasks that would have
previously been largely unthinkable without heavily tailored solutions.

While these models encode an abundance of world knowledge that was previously
elusive to robotics methods, they were trained without embodiments (with the exception
of VLA models), and as such lack an understanding of fundamental concepts for
interacting in the physical world. Humans are exceptionally proficient at operating in
the physical world, particularly in many of the simple domains we expect robots to
operate. With Large Language Models serving as the translator between human and
robot, there is now a cheap, universal, and powerful channel for us to communicate
this knowledge.

In this thesis, we have proposed a novel method for tightly integrating humans into
the robot training pipeline, taking advantage of our ability to both effectively evaluate
erroneous behaviours, and to provide corrective feedback. While previous methods
have demonstrated that this is possible, actually learning from this interaction in a
robotics context is as of yet an under-explored research topic.

We proposed a conceptually simple approach for learning based on Retrieval-
Augmented Generation, allowing a human operator to teach the robot skills. We
have justified this approach, demonstrated its merits, provided insight into its weak-
nesses and limitations, and discussed a variety of directions for future work that we
deem promising.

63

A. Code

We share our code at https://github.com/maxf98/cap_options.

We use ChromaDB for the vector database, OpenAl text-embeddings-3-small for
embeddings, and GPT-4o for all LLM calls. You will need to add an OpenAl API-key
to the environment to interact with the agent.

A.1. Initial set of Examples

Listing A.1: Initial set of few-shot examples the agent receives

#TASK: put one block on top of another block

objects = get_objects()

blocks = [block for block in objects if block.objectType ==]
pose0 = get_object_pose(blocks[0])

posel = get_object_pose(blocks[1])

put_first_on_second(pose0, posel)

#TASK: put the red block in the middle of the workspace

objects = get_objects()

red_block = next(block for block in objects if block.objectType == and block.color ==)
middle_pose = Pose(position=Workspace.middle, rotation=Rotation.identity())
put_first_on_second(red_block, middle_pose)

#TASK: rotate the blue block by 45 degrees
objects = get_objects()

red_block = next(block for block in objects if block.objectType == and block.color ==)
red_block_pose = get_object_pose(red_block)
rotated_pose = Pose(red_block_pose.position, red_block_pose.rotation * Rotation.from_euler(, 90, degrees=True))

put_first_on_second(red_block_pose, rotated_pose)

#TASK: move the smallest block 10cm to the left

objects = get_objects()

smallest_block = min(objects, key=lambda x: x.size[0])

smallest_block_pose = get_object_pose(smallest_block)

translated_pose = Pose(smallest_block_pose.position.translate(Point3D(0, -0.1, 0)), smallest_block_pose.rotation)
put_first_on_second(smallest_block_pose, translated_pose)

#TASK: move the end effector to the middle of the workspace
move_end_effector_to(Pose(Workspace.middle))

A.2. Prompts

We use python format strings for our prompts.

Listing A.2: Main Actor prompts

64

https://github.com/maxf98/cap_options

A. Code

actor_system_prompt = f"""
You write python code to control a robotic arm in a simulated environment, building on an existing API.

You will be given:

- a task for the robotic agent to solve

- api functions you may use to solve the task

- if available, examples of codes that solve prior similar tasks

You are supposed to write flat code to solve the task, i.e. do not write any functioms.
DO NOT make any imports.

Adhere to the following basic types:
{get_core_types_text()}

def actor_prompt(task, few_shot_examples: list[TaskExample], api: list[Skill]):
return f"""
{get_few_shot_examples_string(few_shot_examples)}

{get_skill_string(api)}
The task is: {task}

Write flat code to solve the task.

def actor_iteration_prompt(feedback, examples: list[TaskExample] = []):
return f"""
Rewrite the previous code to integrate the feedback: {feedback}.
{get_few_shot_examples_string(examples)}
Only make changes that take into account this feedback.

wun

Listing A.3: Skill Learning prompts

actor_skill_learning_system_prompt = f"""
You write python code to control a robotic arm in a simulated environment, building on an existing API.
We are trying to learn skills, and are using different tasks to test and effectively learn a specific skill.

You will be given:
- a task for the robotic agent to solve
- the skill you are supposed to use to solve the task

You are supposed to complete the function, as well as flat, task-specific code, as follows:

def given_function(...) ->
O AN
<function code>

<task-specific code>

For example:

IN:

task: "put the red block on the green block"

skill:

def put_block_on_other_block(block: TaskObject, otherBlock: TaskObject):
\"\"\" places the block on top of otherBlock \"\"\"
pass

QOUT:

def put_block_on_other_block(block: TaskObject, otherBlock: TaskObject):
\"\"\" places the block on top of otherBlock \"\"\"
put_first_on_second(get_object_pose(block), get_object_pose(otherBlock))

red_block = get_block(color="red")
green_block = get_block(color="green")
put_block_on_other_block(red_block, green_block)

If the new task requires you to rewrite the function header, you may do so, for example to add arguments, or to update the
docstring with important usage information.

You should try to preserve the previous functionality though, since the function might have previously been used to solve other
tasks, which should remain solvable after changes.

65

A. Code

DO NOT make any imports.
DO NOT write any functions other than the given one.

Adhere to the following basic types:
{get_core_types_text ()}

def skill_learning_prompt (
task,
few_shot_examples: list[TaskExamplel,
skill: Skill,
other_useful_skills: list[Skill],

return f"""
The task is: {task}
The function you are supposed to implement is:

{str(skill)}

{get_few_shot_examples_string(few_shot_examples)}

The following skills may be useful in your implementation:
{"\n\n".join([skill.description for skill in other_useful_skills])}

Implement the function and solve the task, while trying to ensure that prior tasks remain solvable.

Listing A.4: Task Setup prompts

task_setup_api_string = """
def add_block(

self,
env: Environment,
color=None,

size: tuple[float, float, float] = (0.04, 0.04, 0.04),
pose: Pose=None
):
\"\"\" adds a block of a given size and color to the environment
If the pose is left unspecified, a random collision-free pose is selected

I\

def add_zone(
self,
env: Environment,
color: str,
scale: float = 1,
pose: Pose = None
):
\"\"\" adds a zone of a given size and color to the environment
If the pose is left unspecified, a random pose in the workspace is selected

NG

def add_cylinder(self, env: Environment, color: str = "red", scale: float = 0.5):

\"\"\" adds a cylinder of a given scale and color to the environment \"\"\"

task_setup_system_prompt = f"""
You are writing python code to setup a simulated environment, translating user instructions into executable code, based on an
existing API.

You should adhere to the following types:
{get_core_types_text()}

You may use the following API:
{task_setup_api_string}

66

A. Code

EXAMPLES:
HEHA

task: add 3 red blocks and 3 blue blocks
response:
for _ in range(3):

self.add_block(env, "red")

for _ in range(3):
self.add_block(env, "blue")

H#HAH AR

task: add one big block and 4 blocks that are a quarter of the big blocks side length
response:
self.add_block(env, size=(0.08, 0.08, 0.08))
for _ in range(4):
self.add_block(env, size=(0.02, 0.02, 0.02))

HEHAH AR

nun

Listing A.5: Skill Parser prompts

generate_function_header_system_prompt = f"""

We are working in the context of controlling a robotic arm with python code.

The user proposes a certain skill they would like the robot to learn.

To enable this, you are supposed to translate this skill into a python function,

i.e. choose a clear, descriptive name for the function, choose appropriate arguments, and write a clear, descriptive docstring.

For example:

USER: "place one block on top of the other"

RESPONSE:

def place_block_on_other_block(block: TaskObject, otherBlock: TaskObject):
\"\"\" Places one block on top of the other block \"\"\"
pass

Do not try to implement the function yet, that happens later.
You should adhere to the following types:
{get_core_types_text (O}

The functions don’t need Workspace as an argument, since there is only one.
wun

def generate_skill_prompt(prompt, similar_skills: list[Skilll):
return f"""
you may use the following function headers as examples of what you are trying to generate:
{"\n".join([skill.description for skill in similar_skills])}

write a function header for the prompt: {prompt}.

def refine_function_header_prompt(function_code, refinement) :
return f"""
Your role is to refine an existing python function, for example by adding a function argument or changing the name.
If the function is implemented (i.e. not just "pass"), you should also alter the implementation accordingly, making as little
changes and assumptions as possible.
Revise the following python function according to the user instructions:
{function_code}
Refinement prompt:
{refinement}

Do not make any assumptions.
won

class ParsedList(BaseModel):
parsed_list: list[str]

def parse_hint_to_list_prompt (hint):
return f"""
The user provided a list of tasks that are similar to the one you are currently trying to solve, in a single string.
Retrieve each of the task descriptions from this string, and return them as a list.
This is the string: {hint}

67

B. Opening a Drawer

We want to provide a brief hypothetical case study of our method in a less abstract
environment, along with a comparison with the most similar prior work Distilling and
Retrieving Online Corrections for Generalisable Knowledge (DROC) [109].

In DROC, the authors retrieve knowledge relevant to a new task. Since knowledge can
be anything that can be expressed as a string and inserted into a prompt, this is more
flexible than our approach. Moreover, they similarly store the corrected codes.

Q
if" -2 “open the

-
P “* bottom drawer” s .
Knowledge)|
<& P IR Retriever R s M A\
y M)
Va4 N -
New Task: Unseen Instance Generalized Grasp Pose
“open the top drawer” “open the bottom drawer”
(*\ \
- >
“ W < v " p—
"% b f; .{[; ~ ~ . .
S y BT L \‘ =\
e i N j £ »‘\. e m
Helpful Experience Unhelpful Experience

Figure B.1.: Example from DROC, demonstrating the usefulness of visual retrieval of
prior knowledge to solve similar downstream tasks.

In this example, in DROC, the correct gripper orientation is retrieved from the
"helpful experience", to enable gripping of an unseen drawer, and inserted into code
for solving the current task. Importantly, in spite of the task description being the same
("open the drawer"), the "unhelpful experience" would motivate the agent to rotate the
gripper horizontally, and fail the task. We made the same observation in section 6.1,
where the agent successfully places a block next to an axis-aligned block, but the same
code would fail if the block were slightly rotated.

Rather than attempting to retrieve such knowledge, in our method we would like to
handle this behavioural variance in a skill, e.g. open_drawer. One solution would be
to tell it to always use the vertical gripper orientation. Another would be to introduce
another subskill that first determines whether the drawer handle is vertical or horizontal

68

B. Opening a Drawer

(e.g. using a VLM, or dimensions of the segmentation mask, ...), and to adjust the
gripper handle this way.

This is a reliable and interpretable way to alter the robots behaviour. In DROC, if the
robot failed to produce the correct behaviour and we wanted to get an understanding
of why, we would have to inspect the retrieval, the LLM modules that process the
retrieval and pass it down, and then the Code-as-Policies generated skill-code.

The clear advantage of DROC is that it enables a seamless user interaction. In
our method, the user needs to take a very active role, both proposing skills (work
would need to be done to make this intuitive for end-users), and setting up tasks that
meaningfully test these skills. Further work would have to be done to determine how
limiting (or perhaps the opposite) this is.

69

List of Figures

1.1.

2.1.
2.2.
2.3.

24.

3.1.

3.2.

3.3.
3.4.

4.1.

4.2.

5.1.

5.2.

5.3.

Foundation Models enable a natural language interaction with robots.

The agent-environment interactionloop
The human-agent-environment interactionloop
A github pull request, demonstrating the inherent challenges of reward
shaping, in the popular Multi-task benchmark environment Metaworld.
Cognitive Foundation Model Agents, adapted from [80].

Language Model Programs allow us to generate robot behaviours b from
natural language instructions /, by rolling out the generated policy code
cinthe environment. 0oL
A Language Model Program is a Foundation Model tuned for a specific
task via In-Context Learning (see section 2.5.1), in this case by pro-
viding a fixed set of skills (tools) (z;), and few-shot examples ((I;, c;))
demonstrating theiruse.o o 0 L
An example output from the parse_obj Language Model Program.
Code-as-Policies demonstrates that we can compose Language Model
Programs hierarchically, with each LMP fulfilling a distinct function.

Responses to the prompt "stack the blocks", demonstrating both the
inherent ambiguity in language, and failure modes that are easy for
humanstocorrect. L.
LMPs allow humans to issue instructions via natural language, evaluate
behaviour and provide corrections on very short time-scales.

An interactive behaviour creation experience. The user is in control of
every step of the process. L.
Tasks and skills. While learning, each task the user proposes minimally
tests a specificskill. Lo L oo
An example of the task-skill separation. On the left is the task-specific
code, demonstrating how to correctly use the learned skill (on the right).

14

17

18
19

19

27

28

30

32

33

70

List of Figures

54.

5.5.

5.6.

57.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

The system diagram for a single iteration of skill learning within our
approach. The user specifies skill, initial state and instruction (z*,1,sg),
and then iteratively refines the agents response by observing the resulting
behaviour b’ and providing a correction I'. Once b’ is aligned with the
instruction /, the updated skill z* and example (I,c) are added to the
respective libraries Zand £.. o Lo 0oL
The skill parser converts a natural language description of a skill into
the corresponding skill z*. oL
Task setup involves getting the environment into an appropriate initial
configurationsp. L L L
The Toy Environment, with blocks of different sizes and colors, and a
6-DOF robotic arm with a suction gripper.

A basic task curriculum to learn the skill of "placing one block next
to another block", encapsulating the user’s expected behaviour across
different axes of variance, elicited via repeated interaction and corrections
bytheuser..
Correcting a faulty behaviour caused by imprecision in the pick-and-
place primitive. This fault is simple for a non-expert to identify and
correct. The user preference for the appropriate "safe" gap is encoded in
the default gap parameter value.
On the left side we generate flat solution codes, on the right we encapsu-
late the skill logic in a function. When the skill code is rewritten, the flat
solution code is implicitly updated too.
Example of a long-horizon behaviour "build a house", enabled by ex-
tended user interaction. Lo Lo Lo oL
Example of applying a skill hint. The skill for making a line with blocks
inherits the knowledge instilled while learning how to place blocks next
toeachother.
Skill-based code is more interpretable than flat code, and restricts the pa-
rameters that can be varied by the code-writing agent. The corresponding
flat code was too long to be included here.
Functions parameters allow us to define axes along which we expect a
skill to generalise. This is important to maintain the semantic meaning-
fulness of skills, and to ensure skills are reusable.
Assume we want a CaP-based agent to always pick up big red blocks on
one side of the block, rather than in the center. Our method introduces a
mechanism for iteratively refining how to do this, and then reusing this
behaviour only when desired.,

42

43

44

47

48

71

List of Figures

6.9.

6.10.

6.11.

7.1.

B.1.

Examples of how we could add preconditions to skills.
Different learned behaviours, which are now reliably executable with
concise prompts, since we taught the agent what we mean by them.

"non

From left to right: "stack the blocks (from biggest to smallest)", "make
a smiley face", "build a jenga tower", "place (blue block) diagonally to
the (front-right) of (red block)", "build a zig-zag tower", "build a block
pyramid”. ...
The API can be extended without any prompt engineering. The engineer
provides a new skill, and the user can test its applicability via trial-and-

error interaction in the environment.

Two examples of GUI’s to enable robot programming by non-expert
users, each based on using LLMs for code generation.

Example from DROC, demonstrating the usefulness of visual retrieval of
prior knowledge to solve similar downstream tasks.

72

List of Tables

5.1. List of the core-primitives for our agent to build on

73

Bibliography

[1]

[10]

C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram, M. Veloso,
D. Weld, D. W. Sri, A. Barrett, D. Christianson, et al. “Pddl| the planning domain
definition language.” In: Technical Report, Tech. Rep. (1998).

G. Ajaykumar, M. Steele, and C.-M. Huang. “A survey on end-user robot
programming.” In: ACM Computing Surveys (CSUR) 54.8 (2021), pp. 1-36.

J. Aldaco, T. Armstrong, R. Baruch, J. Bingham, S. Chan, K. Draper, D. Dwibedi,
C. Finn, P. Florence, S. Goodrich, et al. “Aloha 2: An enhanced low-cost hardware
for bimanual teleoperation.” In: arXiv preprint arXiv:2405.02292 (2024).

M. G. Arenas, T. Xiao, S. Singh, V. Jain, A. Ren, Q. Vuong, J. Varley, A. Herzog,
I. Leal, S. Kirmani, et al. “How to prompt your robot: A promptbook for
manipulation skills with code as policies.” In: 2024 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2024, pp. 4340-4348.

A. G. Barto and S. Mahadevan. “Recent advances in hierarchical reinforcement
learning.” In: Discrete event dynamic systems 13 (2003), pp. 341-379.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. “Curriculum learning.”
In: Proceedings of the 26th annual international conference on machine learning. 2009,
pp. 41-48.

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi,
J. Gajda, T. Lehmann, H. Niewiadomski, P. Nyczyk, et al. “Graph of thoughts:
Solving elaborate problems with large language models.” In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 38. 16. 2024, pp. 17682-17690.

Z. Bing, A. Koch, X. Yao, K. Huang, and A. Knoll. “Meta-reinforcement learning

via language instructions.” In: 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2023, pp. 5985-5991.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al. “On the opportunities and
risks of foundation models.” In: arXiv preprint arXiv:2108.07258 (2021).

A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding,
D. Driess, A. Dubey, C. Finn, et al. “Rt-2: Vision-language-action models transfer
web knowledge to robotic control.” In: arXiv preprint arXiv:2307.15818 (2023).

74

Bibliography

(1]

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, et al. “Language models are few-shot
learners.” In: Advances in neural information processing systems 33 (2020), pp. 1877-
1901.

Y. Cao, H. Zhao, Y. Cheng, T. Shu, Y. Chen, G. Liu, G. Liang, J. Zhao, J. Yan,
and Y. Li. “Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods.” In: IEEE Transactions on Neural Networks and
Learning Systems (2024).

X. Chen, M. Lin, N. Schirli, and D. Zhou. “Teaching large language models to
self-debug.” In: arXiv preprint arXiv:2304.05128 (2023).

C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S.
Song. “Diffusion policy: Visuomotor policy learning via action diffusion.” In:
The International Journal of Robotics Research (2023), p. 02783649241273668.

W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos, T. Li, D. Li, B. Zhu,
H. Zhang, M. Jordan, J. E. Gonzalez, et al. “Chatbot arena: An open platform
for evaluating llms by human preference.” In: Forty-first International Conference
on Machine Learning. 2024.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep
bidirectional transformers for language understanding.” In: Proceedings of the
2019 conference of the North American chapter of the association for computational
linguistics: human language technologies, volume 1 (long and short papers). 2019,
pp. 4171-4186.

J. Duan, W. Yuan, W. Pumacay, Y. R. Wang, K. Ehsani, D. Fox, and R. Krishna.
“Manipulate-anything: Automating real-world robots using vision-language
models.” In: arXiv preprint arXiv:2406.18915 (2024).

J. Eschmann. “Reward function design in reinforcement learning.” In: Reinforce-
ment learning algorithms: Analysis and Applications (2021), pp. 25-33.

R. M. French. “Catastrophic forgetting in connectionist networks.” In: Trends in
cognitive sciences 3.4 (1999), pp. 128-135.

Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, H. Wang, and H.
Wang. “Retrieval-augmented generation for large language models: A survey.”
In: arXiv preprint arXiv:2312.10997 2 (2023).

L. Guan, Y. Zhou, D. Liu, Y. Zha, H. B. Amor, and S. Kambhampati. “Task success
is not enough: Investigating the use of video-language models as behavior critics

for catching undesirable agent behaviors.” In: arXiv preprint arXiv:2402.04210
(2024).

75

Bibliography

[22]

(23]

[24]

[25]

H. Guo, F. Wy, Y. Qin, R. Li, K. Li, and K. Li. “Recent trends in task and motion
planning for robotics: A survey.” In: ACM Computing Surveys 55.13s (2023),
pp. 1-36.

H. Ha, P. Florence, and S. Song. “Scaling up and distilling down: Language-
guided robot skill acquisition.” In: Conference on Robot Learning. PMLR. 2023,
pp. 3766-3777.

S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang, and Z. Hu. “Reason-
ing with language model is planning with world model.” In: arXiv preprint
arXiv:2305.14992 (2023).

T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and Y. Tassa.
“Predictive sampling: Real-time behaviour synthesis with mujoco.” In: arXiv
preprint arXiv:2212.00541 (2022).

Y. Hu, Q. Xie, V. Jain, J. Francis,]J. Patrikar, N. Keetha, S. Kim, Y. Xie, T. Zhang,
H.-S. Fang, et al. “Toward general-purpose robots via foundation models: A
survey and meta-analysis.” In: arXiv preprint arXiv:2312.08782 (2023).

Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao. “Look before you leap: Unveiling
the power of gpt-4v in robotic vision-language planning.” In: arXiv preprint
arXiv:2311.17842 (2023).

W. Huang, C. Wang, R. Zhang, Y. Li,]. Wu, and L. Fei-Fei. “Voxposer: Compos-

able 3d value maps for robotic manipulation with language models.” In: arXiv
preprint arXiv:2307.05973 (2023).

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,]. Tompson,
I. Mordatch, Y. Chebotar, et al. “Inner monologue: Embodied reasoning through
planning with language models.” In: arXiv preprint arXiv:2207.05608 (2022).

X. Huang, W. Liu, X. Chen, X. Wang, H. Wang, D. Lian, Y. Wang, R. Tang, and
E. Chen. “Understanding the planning of LLM agents: A survey.” In: arXiv
preprint arXiv:2402.02716 (2024).

A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow,
A. Welihinda, A. Hayes, A. Radford, et al. “Gpt-4o0 system card.” In: arXiv
preprint arXiv:2410.21276 (2024).

J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine. “How to train
your robot with deep reinforcement learning: lessons we have learned.” In: The
International Journal of Robotics Research 40.4-5 (2021), pp. 698-721.

S. James, Z. Ma, D. R. Arrojo, and A.]J. Davison. “Rlbench: The robot learning
benchmark & learning environment.” In: IEEE Robotics and Automation Letters
5.2 (2020), pp. 3019-3026.

76

Bibliography

[34]
(35]

[42]

[43]

D. Kahneman. Thinking, fast and slow. macmillan, 2011.

S. Kambhampati, K. Valmeekam, L. Guan, M. Verma, K. Stechly, S. Bhambri,
L. P. Saldyt, and A. B. Murthy. “Position: LLMs can’t plan, but can help planning
in LLM-modulo frameworks.” In: Forty-first International Conference on Machine
Learning. 2024.

U. B. Karli, J.-T. Chen, V. N. Antony, and C.-M. Huang. “Alchemist: Llm-
aided end-user development of robot applications.” In: Proceedings of the 2024
ACM/IEEE International Conference on Human-Robot Interaction. 2024, pp. 361-370.

T. Kaufmann, P. Weng, V. Bengs, and E. Hiillermeier. “A survey of reinforcement
learning from human feedback.” In: arXiv preprint arXiv:2312.14925 10 (2023).

O. Khatib. “A unified approach for motion and force control of robot manip-
ulators: The operational space formulation.” In: IEEE Journal on Robotics and
Automation 3.1 (1987), pp. 43-53.

M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov,
E. Foster, G. Lam, P. Sanketi, et al. “Openvla: An open-source vision-language-
action model.” In: arXiv preprint arXiv:2406.09246 (2024).

Y. Kim, D. Kim, J. Choi, J. Park, N. Oh, and D. Park. “A survey on integration
of large language models with intelligent robots.” In: Intelligent Service Robotics
17.5 (2024), pp. 1091-1107.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S.
Whitehead, A. C. Berg, W.-Y. Lo, et al. “Segment anything.” In: Proceedings of the
IEEE/CVF international conference on computer vision. 2023, pp. 4015-4026.

B. Kouvaritakis and M. Cannon. “Model predictive control.” In: Switzerland:
Springer International Publishing 38.13-56 (2016), p. 7.

H. Koziolek, S. Griiner, R. Hark, V. Ashiwal, S. Linsbauer, and N. Eskandani.
“LLM-based and retrieval-augmented control code generation.” In: Proceedings of
the 1st International Workshop on Large Language Models for Code. 2024, pp. 22-29.

H. Le, H. Chen, A. Saha, A. Gokul, D. Sahoo, and S. Joty. “Codechain: Towards
modular code generation through chain of self-revisions with representative
sub-modules.” In: arXiv preprint arXiv:2310.08992 (2023).

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiittler,
M. Lewis, W.-t. Yih, T. Rocktaschel, et al. “Retrieval-augmented generation for
knowledge-intensive nlp tasks.” In: Advances in neural information processing
systems 33 (2020), pp. 9459-9474.

77

Bibliography

[46]

[47]

[49]

[50]

Z. Li, K. Yu, S. Cheng, and D. Xu. “League++: Empowering continual robot
learning through guided skill acquisition with large language models.” In: ICLR
2024 Workshop on Large Language Model (LLM) Agents. 2024.

J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A.
Zeng. “Code as policies: Language model programs for embodied control.” In:
2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2023,
pp- 9493-9500.

J. Liang, F. Xia, W. Yu, A. Zeng, M. G. Arenas, M. Attarian, M. Bauza, M.
Bennice, A. Bewley, A. Dostmohamed, et al. “Learning to learn faster from

human feedback with language model predictive control.” In: arXiv preprint
arXiv:2402.11450 (2024).

B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang,]. Biswas, and P. Stone. “Llm+ p:
Empowering large language models with optimal planning proficiency.” In:
arXiv preprint arXiv:2304.11477 (2023).

J. Luketina, N. Nardelli, G. Farquhar, J. Foerster,]. Andreas, E. Grefenstette,
S. Whiteson, and T. Rocktaschel. “A survey of reinforcement learning informed
by natural language.” In: arXiv preprint arXiv:1906.03926 (2019).

C. Lynch and P. Sermanet. “Language conditioned imitation learning over
unstructured data.” In: arXiv preprint arXiv:2005.07648 (2020).

Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu,
L. Fan, and A. Anandkumar. “Eureka: Human-level reward design via coding
large language models.” In: arXiv preprint arXiv:2310.12931 (2023).

S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall. “Robot operating
system 2: Design, architecture, and uses in the wild.” In: Science robotics 7.66
(2022), eabm6074.

A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao,]. Emmons,
A. Gupta, E. Orbay, et al. “Roboturk: A crowdsourcing platform for robotic
skill learning through imitation.” In: Conference on Robot Learning. PMLR. 2018,
pp- 879-893.

J. W. Mao. “A framework for llm-based lifelong learning in robot manipulation.”
PhD thesis. Massachusetts Institute of Technology, 2024.

O. Mees, L. Hermann, and W. Burgard. “What matters in language conditioned
robotic imitation learning over unstructured data.” In: IEEE Robotics and Automa-
tion Letters 7.4 (2022), pp. 11205-11212.

78

Bibliography

[57]

M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y.
Guo, H. Mazhar, et al. “Orbit: A unified simulation framework for interactive
robot learning environments.” In: IEEE Robotics and Automation Letters 8.6 (2023),
pp. 3740-3747.

M. Murray, A. Gupta, and M. Cakmak. “Teaching Robots with Show and Tell:
Using Foundation Models to Synthesize Robot Policies from Language and
Visual Demonstration.” In: 8th Annual Conference on Robot Learning. 2024.

O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine. “Why does hierar-
chy (sometimes) work so well in reinforcement learning?” In: arXiv preprint
arXiv:1909.10618 (2019).

S. Narvekar, B. Peng, M. Leonetti,]J. Sinapov, M. E. Taylor, and P. Stone. “Cur-
riculum learning for reinforcement learning domains: A framework and survey.”
In: Journal of Machine Learning Research 21.181 (2020), pp. 1-50.

A. O'Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley,
A. Gupta, A. Mandlekar, A. Jain, et al. “Open x-embodiment: Robotic learning
datasets and rt-x models: Open x-embodiment collaboration 0.” In: 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2024, pp. 6892—
6903.

O. Ovadia, M. Brief, M. Mishaeli, and O. Elisha. “Fine-tuning or retrieval?
comparing knowledge injection in llms.” In: arXiv preprint arXiv:2312.05934
(2023).

M. Parakh, A. Fong, A. Simeonov, T. Chen, A. Gupta, and P. Agrawal. “Life-
long robot learning with human assisted language planners.” In: 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2024, pp. 523-
529.

Y. Park, G. B. Margolis, and P. Agrawal. “Automatic environment shaping is the
next frontier in rl.” In: arXiv preprint arXiv:2407.16186 (2024).

Y. Qin, S. Hu, Y. Lin, W. Chen, N. Ding, G. Cui, Z. Zeng, X. Zhou, Y. Huang,
C. Xiao, et al. “Tool learning with foundation models.” In: ACM Computing
Surveys 57.4 (2024), pp. 1-40.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al. “Learning transferable visual models from
natural language supervision.” In: International conference on machine learning.
PmLR. 2021, pp. 8748-8763.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. “Improving language
understanding by generative pre-training.” In: (2018).

79

Bibliography

[68]

[69]

[73]

[74]

[75]

H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard. “Recent advances
in robot learning from demonstration.” In: Annual review of control, robotics, and
autonomous systems 3.1 (2020), pp. 297-330.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron,
M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg, et al. “A generalist agent.” In:
arXiv preprint arXiv:2205.06175 (2022).

N. Reimers and I. Gurevych. “Sentence-bert: Sentence embeddings using siamese
bert-networks.” In: arXiv preprint arXiv:1908.10084 (2019).

T. Schaul, D. Horgan, K. Gregor, and D. Silver. “Universal value function
approximators.” In: International conference on machine learning. PMLR. 2015,
pp- 1312-1320.

F. Shi, X. Chen, K. Misra, N. Scales, D. Dohan, E. H. Chi, N. Scharli, and D.
Zhou. “Large language models can be easily distracted by irrelevant context.”
In: International Conference on Machine Learning. PMLR. 2023, pp. 31210-31227.

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao. “Reflexion:
Language agents with verbal reinforcement learning.” In: Advances in Neural
Information Processing Systems 36 (2023), pp. 8634-8652.

A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal,
and V. Sitzmann. “Neural descriptor fields: Se (3)-equivariant object repre-
sentations for manipulation.” In: 2022 International Conference on Robotics and
Automation (ICRA). IEEE. 2022, pp. 6394-6400.

I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu,]J. Tremblay, D. Fox, J.
Thomason, and A. Garg. “Progprompt: Generating situated robot task plans
using large language models.” In: 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2023, pp. 11523-11530.

J. Skalse, N. Howe, D. Krasheninnikov, and D. Krueger. “Defining and charac-
terizing reward gaming.” In: Advances in Neural Information Processing Systems 35
(2022), pp. 9460-9471.

S. Song, A. Zeng, J. Lee, and T. Funkhouser. “Grasping in the wild: Learning
6dof closed-loop grasping from low-cost demonstrations.” In: IEEE Robotics and
Automation Letters 5.3 (2020), pp. 4978-4985.

M. T. Spaan. “Partially observable Markov decision processes.” In: Reinforcement
learning: State-of-the-art. Springer, 2012, pp. 387-414.

S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor.
“Language-conditioned imitation learning for robot manipulation tasks.” In:
Advances in Neural Information Processing Systems 33 (2020), pp. 13139-13150.

80

Bibliography

[90]

[91]

[92]

T. Sumers, S. Yao, K. Narasimhan, and T. Griffiths. “Cognitive architectures for
language agents.” In: Transactions on Machine Learning Research (2023).

R. S. Sutton, A. G. Barto, et al. Reinforcement learning: An introduction. Vol. 1. 1.
MIT press Cambridge, 1998.

R. S. Sutton, D. Precup, and S. Singh. “Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning.” In: Artificial
intelligence 112.1-2 (1999), pp. 181-211.

C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Martin-Martin, and P. Stone.
“Deep reinforcement learning for robotics: A survey of real-world successes.” In:
Annual Review of Control, Robotics, and Autonomous Systems 8 (2024).

O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J.
Hejna, T. Kreiman, C. Xu, et al. “Octo: An open-source generalist robot policy.”
In: arXiv preprint arXiv:2405.12213 (2024).

M. Toussaint. “Logic-Geometric Programming: An Optimization-Based Ap-
proach to Combined Task and Motion Planning.” In: IJCAI 2015, pp. 1930-
1936.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin. “Attention is all you need.” In: Advances in neural
information processing systems 30 (2017).

S. H. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor. “Chatgpt for robotics:
Design principles and model abilities.” In: leee Access (2024).

N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi. “Gpt-4v
(ision) for robotics: Multimodal task planning from human demonstration.” In:
IEEE Robotics and Automation Letters (2024).

G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anand-
kumar. “Voyager: An open-ended embodied agent with large language models.”
In: arXiv preprint arXiv:2305.16291 (2023).

J. Wang, E. Shi, H. Hu, C. Ma, Y. Liu, X. Wang, Y. Yao, X. Liu, B. Ge, and S.
Zhang. “Large language models for robotics: Opportunities, challenges, and
perspectives.” In: Journal of Automation and Intelligence (2024).

L. Wang, Y. Ling, Z. Yuan, M. Shridhar, C. Bao, Y. Qin, B. Wang, H. Xu, and X.
Wang. “Gensim: Generating robotic simulation tasks via large language models.”
In: arXiv preprint arXiv:2310.01361 (2023).

X. Wang, Y. Chen, L. Yuan, Y. Zhang, Y. Li, H. Peng, and H. Ji. “Executable code
actions elicit better llm agents.” In: Forty-first International Conference on Machine
Learning. 2024.

81

Bibliography

(93]

[94]

[100]

[101]

[102]

[103]

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and
D. Zhou. “Self-consistency improves chain of thought reasoning in language
models.” In: arXiv preprint arXiv:2203.11171 (2022).

Y. Wang, Z. Sun, J. Zhang, Z. Xian, E. Biyik, D. Held, and Z. Erickson. “Rl-vIm-f:
Reinforcement learning from vision language foundation model feedback.” In:
arXiv preprint arXiv:2402.03681 (2024).

Z. Wang, S. Cai, G. Chen, A. Liu, X. Ma, and Y. Liang. “Describe, explain, plan
and select: Interactive planning with large language models enables open-world
multi-task agents.” In: arXiv preprint arXiv:2302.01560 (2023).

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou,
et al. “Chain-of-thought prompting elicits reasoning in large language models.”
In: Advances in neural information processing systems 35 (2022), pp. 24824-24837.

J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song,]. Bohg, S. Rusinkiewicz,
and T. Funkhouser. “Tidybot: Personalized robot assistance with large language
models.” In: Autonomous Robots 47.8 (2023), pp. 1087-1102.

W. Xie, M. Valentini, J. Lavering, and N. Correll. “DeliGrasp: Inferring Ob-
ject Properties with LLMs for Adaptive Grasp Policies.” In: arXiv preprint
arXiv:2403.07832 (2024).

K. Yang, J. Liu, J. Wu, C. Yang, Y. R. Fung, S. Li, Z. Huang, X. Cao, X. Wang,
Y. Wang, et al. “If llm is the wizard, then code is the wand: A survey on how

code empowers large language models to serve as intelligent agents.” In: arXiv
preprint arXiv:2401.00812 (2024).

S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. “Tree of
thoughts: Deliberate problem solving with large language models.” In: Advances
in neural information processing systems 36 (2023), pp. 11809-11822.

W. Ye, Y. Zhang, H. Weng, X. Gu, S. Wang, T. Zhang, M. Wang, P. Abbeel, and
Y. Gao. “Reinforcement Learning with Foundation Priors: Let the Embodied
Agent Efficiently Learn on Its Own.” In: arXiv preprint arXiv:2310.02635 (2023).

T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. “Meta-
world: A benchmark and evaluation for multi-task and meta reinforcement
learning.” In: Conference on robot learning. PMLR. 2020, pp. 1094-1100.

W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-T. L. Chiang,
T. Erez, L. Hasenclever, J. Humplik, et al. “Language to rewards for robotic skill
synthesis.” In: arXiv preprint arXiv:2306.08647 (2023).

82

Bibliography

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

W. Yuan, A. Murali, A. Mousavian, and D. Fox. “M2t2: Multi-task masked
transformer for object-centric pick and place.” In: arXiv preprint arXiv:2311.00926
(2023).

K. Zakka. Mink: Python inverse kinematics based on MujJoCo. Version 0.0.4. July
2024.

M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi. “A survey of imitation
learning: Algorithms, recent developments, and challenges.” In: IEEE Transac-
tions on Cybernetics (2024).

A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari,
A. Purohit, M. Ryoo, V. Sindhwani, et al. “Socratic models: Composing zero-shot
multimodal reasoning with language.” In: arXiv preprint arXiv:2204.00598 (2022).

A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong,
L. Krasin, D. Duong, V. Sindhwani, et al. “Transporter networks: Rearranging the
visual world for robotic manipulation.” In: Conference on Robot Learning. PMLR.
2021, pp. 726-747.

L. Zha, Y. Cui, L.-H. Lin, M. Kwon, M. G. Arenas, A. Zeng, F. Xia, and D. Sadigh.
“Distilling and retrieving generalizable knowledge for robot manipulation via
language corrections.” In: 2024 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2024, pp. 15172-15179.

S. Zhang, P. Wicke, L. K. Senel, L. Figueredo, A. Naceri, S. Haddadin, B. Plank,
and H. Schiitze. “Lohoravens: A long-horizon language-conditioned benchmark
for robotic tabletop manipulation.” In: arXiv preprint arXiv:2310.12020 (2023).

A. Zhao, D. Huang, Q. Xu, M. Lin, Y.-J. Liu, and G. Huang. “Expel: LIm agents
are experiential learners.” In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 38. 17. 2024, pp. 19632-19642.

H. Zhou, X. Yao, Y. Meng, S. Sun, Z. Bing, K. Huang, and A. Knoll. “Language-
conditioned learning for robotic manipulation: A survey.” In: arXiv preprint
arXiv:2312.10807 (2023).

Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiriany, and
Y. Zhu. “robosuite: A modular simulation framework and benchmark for robot
learning.” In: arXiv preprint arXiv:2009.12293 (2020).

83

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Preliminaries
	The Human-Agent-Environment loop
	Reinforcement learning
	Reward shaping
	Extensions
	Challenges

	Task-and-Motion Planning
	Learning from demonstrations
	Teleoperation
	End-user Programming

	Foundation Models
	Interface
	Foundation Model Agents
	Vision-Language Action models

	Background
	Code-as-Policies
	Benefits
	Limitations

	Language Model Programs for Robotics
	Foundation Models for Reinforcement Learning

	System 2 Learning
	Learning from Experience
	Learning from Human Interaction

	Motivation
	Problem statement
	Skill learning via natural language interaction

	Method
	Tasks and Skills
	Skill Learning
	Managing the Context Window
	Hints

	Auxiliary Functions
	Toy Environment

	Experiments
	Learning a Skill
	Learning a Long-Horizon Behaviour
	Hints
	Advantages of learned skills
	Encapsulation
	Interpretability
	Defined axes of generalisation
	Targeted and deliberate integration of preferences
	Preconditions
	Continual Learning

	Challenges
	Limited ability to respond to feedback
	Writing code
	Retrieval
	User experience
	Environment

	Discussion
	Novelty
	Limitations
	Evaluation

	Future Work
	More advanced cognitive architectures
	Richer primitives
	Tailored Environments
	User interface
	Finetuning
	Experiments with non-expert users

	Conclusion
	Code
	Initial set of Examples
	Prompts

	Opening a Drawer
	List of Figures
	List of Tables
	Bibliography

